Chinese Journal of Chemical Engineering, Vol.26, No.8, 1692-1699, 2018
Design of heat exchanger network based on entransy theory
The heat exchanger network (HEN) synthesis problem based on entransy theory is analyzed. According to the characteristics of entransy representation of thermal potential energy, the entransy dissipation represents the irreversibility of the heat transfer process, the temperature difference determines the entransy dissipation, and four HEN design steps based on entransy theory are put forward. The present study shows how it is possible to set energy targets based on entransy and achieve them with a network of heat exchangers by an example of heat exchanger network design for four streams. In order to verify the correctness of the heat exchanger networks design method based on entransy theory, the synthesis of the HEN for the diesel hydrogenation unit is studied. Using the heat exchange networks design method based on entransy theory, the HEN obtained is consistent with energy targets. The entransy transfer efficiency of HEN based on entransy theory is 92.29%, higher than the entransy transfer efficiency of the maximum heat recovery network based on pinch technology. (C) 2017 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.
Keywords:Process systems;Heat exchanger network synthesis;Heat transfer;Entransy;Energy target;Pinch