Heat Transfer Engineering, Vol.39, No.15, 1364-1376, 2018
Improved Finite Volume Method for Three-Dimensional Radiative Heat Transfer in Complex Enclosures Containing Homogenous and Inhomogeneous Participating Media
The paper presents a modified finite volume method for the solution of the radiative transport equation, which implements the FTn angular discretization along with the bounded high-resolution curved line advection method to alleviate ray effect and false scattering, respectively, and consequently improve the accuracy of the final results. Using the blocked-off-region procedure, the present formulation is capable of treating blockage effects caused by inner/outer obstructing bodies. The developed methodology based on the combination of the above methods is evaluated against five three-dimensional test cases considering either homogenous or inhomogeneous participating media. For all cases, the predictions reveal the mitigation of false scattering and ray effects consequently the improvement of accuracy, employing this model for solving radiation heat transfer in industrial applications. In industrial application, the radiative heat transfer problem is solved for a unity boiler furnace where an inhomogeneous medium is assumed. The effects of the scattering albedo, walls emissivity and walls temperature are investigated.