화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.6, 779-783, December, 2018
VRLA 배터리의 충/방전 거동과 노화 예측 모델링
Prediction of Charge/Discharge Behaviors and Aging of the VRLA Battery
E-mail:
초록
본 연구에서는 차량용 12 V 납축전지로 주로 사용되는 VRLA (Valve regulated lead acid) 배터리의 충/방전 특성과 노화에 따른 이의 변화를 수학적으로 모델링하였다. 기존에 리튬 이온 배터리의 거동 예측에 주로 이용되어 왔던 수학적 모델링 기법을 상용 70 Ah VRLA 배터리에 적용하였다. 정전류 충/방전에 따른 전압의 변화를 모델링 결과와 비교하였다. 비교 결과로부터 사용된 수학적 모델이 납축전지에도 높은 정확도로 적용될 수 있음을 알 수 있었다. 또한 이를 이용하여 납축전지의 노화를 예측할 수 있음을 확인하였다.
In this work, Mathematical modeling was carried-out to predict the charging/discharging characteristics of VRLA (Valve regulated lead acid) battery, which is mainly used as a 12 V lead acid battery for automobile. And It also carried-out how it’s characteristics would be changed due to aging. A mathematical modeling technique, which has been mainly used to predict behavior of Lithium-ion batteries, is applied to commercial 70 Ah VRLA battery. The modeling result of Voltage was compared with result of constant current charge / discharge test. From this, it can be seen that the NTGK model can be applied to the lead acid battery with high accuracy. It was also found that the aging of lead-acid battery can be predicted by using it.
  1. Guo YL, Groiss R, Doring H, Garche J, J. Electrochem. Soc., 146(11), 3949 (1999)
  2. Nguyen TV, White RE, Gu H, J. Electrochem. Soc., 137(10), 2998 (1990)
  3. Huang HT, Nguyen TV, J. Electrochem. Soc., 144(6), 2062 (1997)
  4. Bernardi DM, Carpenter MK, J. Electrochem. Soc., 142(8), 2631 (1995)
  5. Newman J, Tiedemann W, J. Electrochem. Soc., 144(9), 3081 (1997)
  6. Kwon KH, Shin CB, Kang TH, Kim CS, J. Power Sources, 163(1), 151 (2006)
  7. Kim US, Yi J, Shin CB, Han T, Park S, J. Power Sources, 158, A611 (2011)
  8. Tiedemann W, Newman J, J. Electrochem. Soc., Princeton, NJ, 39-49(1979).
  9. Newman J, Tiedemann W, J. Electrochem. Soc., 140, 1961 (1993)
  10. Gu H, J. Electrochem. Soc., 130, 1459 (1983)
  11. Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ, J. Power Sources, 97, 13 (2001)
  12. Bloom I, Cole BW, Sohn JJ, Jones SA, Polzin EG, Battaglia VS, Henriksen GL, Motloch C, Richardson R, Unkelhaeuser T, Ingersoll D, Case HL, J. Power Sources, 101(2), 238 (2001)
  13. Ruetschi P, J. Power Sources, 127(1-2), 33 (2004)
  14. Yi J, Koo B, Shin CB, Han T, Park S, Comput. Chem. Eng., 99, 31 (2017)
  15. BSI., “Lead-acid Starter Batteries : Batteries for Micro-Cycle Applications,” BSI, 19-20(2015).