화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.11, 633-639, November, 2018
유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석
Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells
E-mail:
In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.
  1. Ge X, Sumboja A, Wuu D, An T, Li B, Goh FWT, Hor TSA, Zong Y, Liu Z, ACS Catal., 5, 4643 (2015)
  2. Antolini E, Energy Environ. Sci., 2, 915 (2009)
  3. Dekel DR, J. Power Sources, 375, 158 (2018)
  4. Pan ZF, An L, Zhao TS, Tang ZK, Prog. Energy Combust. Sci., 66, 141 (2018)
  5. Pan ZF, Chen R, An L, Li YS, J. Power Sources, 365, 430 (2017)
  6. Jiang L, Hsu A, Chu D, Chen R, J. Electrochem. Soc., 156, 370 (2009)
  7. Seo MH, Choi SM, Kim HJ, Kim WB, Electrochem. Commun., 13, 182 (2011)
  8. Nguyen VL, Nguyen DC, Hirata H, Ohtaki M, Hayakawa T, Nogami M, Adv. Nat. Sci.: Nanosci. Nanotechnol., 1, 035012 (2010)
  9. Chen AC, Ostrom C, Chem. Rev., 115(21), 11999 (2015)
  10. Uberman PM, Perez LA, Martin SE, Lacconi GI, RSC Adv., 4, 12330 (2014)
  11. Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Bulto AMM, Chaudret B, J. Organomet. Chem., 689, 4601 (2004)
  12. Ananikov VP, Orlov NV, Beletskaya IP, Khrustalev VN, Antipin MY, Timofeeva TV, J. Am. Ceram. Soc., 129, 7252 (2007)
  13. Cookson J, Platin. Met. Rev., 56, 83 (2012)
  14. Morsy SMI, Int. J. Curr. Microbiol. App. Sci., 3, 237 (2014)
  15. Tojo C, Dios M, Barroso F, Materials, 4, 55 (2011)
  16. Song Y, Kumar CSSR, Hormes J, J. Nanosci. Nanotechnol., 4, 1 (2004)
  17. Demir MM, Gulgun MA, Menceloglu YZ, Erman B, Abramchuk SS, Makhaeva EE, Khokhlov AR, Matveeva VG, Sulman MG, Macromolecules, 37(5), 1787 (2004)
  18. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK, Accounts Chem. Res., 34, 181 (2001)
  19. Zhao M, Crooks RM, Angew. Chem.-Int. Edit., 38, 364 (1999)
  20. Karakhanov E, Maximov A, Kardasheva Y, Semernina V, Zolotukhina A, Ivanov A, Abbott G, Rosenberg E, Vinokurov V, ACS Appl. Mater. Interfaces, 6, 8807 (2014)
  21. Gavia DJ, Shon YS, ChemCatChem, 7, 892 (2015)
  22. He GQ, Song Y, Kang XW, Chen SW, Electrochim. Acta, 94, 98 (2013)
  23. Ortiz N, Skrabalak SE, Langmuir, 30(23), 6649 (2014)
  24. LaGrow AP, Knudsen KR, AlYami NM, Anjum DH, Bakr OM, Chem. Mater., 27, 4134 (2015)
  25. Mourdikoudis S, Marzan LML, Chem. Mater., 25, 1465 (2013)
  26. Hu B, Ding K, Wu T, Zhou X, Fan H, Jiang T, Wang Q, Han B, Chem. Commun., 46, 8552 (2010)
  27. Yang Z, Klabunde KJ, J. Organomet. Chem., 694, 1016 (2009)
  28. Carenco S, Boissiere C, Nicole L, Sanchez C, Floch PL, Mezailles N, Chem. Mater., 22, 1340 (2010)
  29. Lagrow AP, Ingham B, Toney MF, Tilley RD, J. Phys. Chem. C, 117, 16709 (2013)
  30. Mazumder V, Chi M, Mankin MN, Liu Y, Metin O, Sun D, More KL, Sun S, Nano Lett., 12, 1102 (2012)
  31. Liu Y, Wang C, Wei Y, Zhu L, Li D, Jiang JS, Markovic NM, Stamenkovic VR, Sun S, Nano Lett., 11, 1614 (2011)
  32. Yang S, Dong J, Yao Z, Shen C, Shi X, Tian Y, Lin S, Zhang X, Sci. Rep., 4, 4501 (2014)
  33. Chiang RK, Chiang RT, Inorg. Chem., 46(2), 369 (2007)
  34. Singh J, Kaurav N, Lalla NP, Okram GS, J. Mater. Chem. C, 2, 8918 (2014)
  35. Ortiz N, Skrabalak SE, Angew. Chem.-Int. Edit., 51, 11757 (2012)
  36. Ye Y, Chun J, Park S, Kim TJ, Chung YM, Oh SH, Song IK, Lee J, Korean J. Chem. Eng., 29(9), 1115 (2012)
  37. Li D, Wang C, Tripkovic D, Sun S, Markovic NM, Stamenkovic VR, ACS Catal., 2, 1358 (2012)
  38. Yano H, Watanabe M, Liyama A, Uchida H, Nano Energy, 29, 323 (2016)
  39. Xu Z, Zhang HM, Zhong HX, Lu QH, Wang YF, Su DS, Appl. Catal. B: Environ., 111, 264 (2012)
  40. Anastasopoulos A, Davies JC, Hannah L, Hayden BE, Lee CE, Milhano C, Mormiche C, Offin L, ChemSusChem, 6, 1973 (2013)