Korean Journal of Materials Research, Vol.28, No.11, 646-652, November, 2018
다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매
Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions
E-mail:
During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, O2 can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.
Keywords:polymer electrolyte membrane fuel cell;durability;carbon layer;catalyst;oxygen reduction reaction
- Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM, Nat. Mater., 6(3), 241 (2007)
- Jung N, Chung DY, Ryu J, Yoo SJ, Sung YE, Nano Today, 9(4), 433 (2014)
- Fu X, Zamani P, Choi JY, Hassan FM, Jiang G, Higgins DC, Hoque MA, Zhang Y, Chen Z, Adv. Mater., 29, 160445 (2016)
- Meier JC, Galeano C, Katsounaros L, Witte J, Bongard HJ, Topalov AA, Baldizzone C, Mezzavilla S, Schuth F, Mayrhofer KJJ, Beilstein J. Nanotechnol., 5, 44 (2014)
- Sharma M, Jung N, Yoo SJ, Chem. Mater., 30, 2 (2018)
- Jung N, Cho YH, Choi KH, Lim JW, Cho YH, Ahn M, Kang YS, Sung YE, Electrochem. Commun., 12, 754 (2010)
- Thomas SC, Ren XM, Gottesfeld S, Zelenay P, Electrochim. Acta, 47(22-23), 3741 (2002)
- Toda T, Igarashi H, Uchida H, Watanabe M, J. Electrochem. Soc., 148, 3750 (1999)
- Chiwata M, Yano H, Ogawa S, Watanabe M, Iiyama A, Uchida H, Electrochemistry, 83, 133 (2016)
- Holton OT, Stevenson JW, Platinum Metals Rev., 57, 259 (2013)
- Cherevko S, Kulyk N, Mayrhofer KJJ, Nano Energy, 29, 275 (2016)
- Takahashi I, Kocha SS, J. Power Sources, 195(19), 6312 (2010)
- Long NV, Yang Y, Thi CM, Minh NV, Cao Y, Nogami M, Nano Energy, 2, 636 (2013)
- Wang C, Chi MF, Li DG, Strmcnik D, van der Vliett D, Wang GF, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR, J. Am. Chem. Soc., 133(36), 14396 (2011)
- Cui R, Mei L, Han G, Chen J, Zhang G, Quan Y, Gu N, Zhang L, Fang Y, Qien B, Jiang X, Han Z, Sci. Rep., 7, 41826 (2017)
- Hoseini SJ, Bahrami M, Dehghani M, RSC Adv., 4, 13796 (2014)
- Yan ZH, Wang M, Liu JF, Liu RM, Zhao JS, Electrochim. Acta, 141, 331 (2014)
- Kaewsai D, Yeamdee S, Supajaroon S, Hunsom M, Int. J. Hydrog. Energy, 43(10), 5133 (2018)
- Yang RT, Goethel PJ, Schwartz JM, Lund CRF, J. Catal., 122, 206 (1990)
- Moisala A, Nasibulin AG, Kauppinen EI, J. Phys. Condens. Matter, 15, S3011 (2003)
- Jeon TY, Yoo SJ, Park HY, Kim SK, Lim S, Peck D, Jung DH, Sung YE, Langmuir, 28(7), 3664 (2012)
- Chen L, Mashimo T, Iwamoto C, Okudera H, Omurzak E, Genapathy HS, Ihara H, Zhang J, Nanotechnology, 24, 045602 (2013)
- Han YF, Kumar D, Sivadinarayana C, Clearfield A, Goodman DW, Catal. Lett., 94(3-4), 131 (2004)