Journal of Colloid and Interface Science, Vol.532, 352-362, 2018
1D ultrafine SnO2 nanorods anchored on 3D graphene aerogels with hierarchical porous structures for high-performance lithium/sodium storage
SnO2 is considered as one of the most promising alternative anode materials for lithium ion batteries (LIBs) and sodium ion batteries (SIBS) due to high specific capacity, low discharge voltage plateau and environmental friendliness. In this work, 1D ultrafine SnO2 nanorods anchored on 3D graphene aerogel (SnO2 NRs/GA) composite is prepared through a simple reduction-induced self-assembly method in the solution of graphene oxide (GO), Vitamin C and SnO2 nanoparticles. Vitamin C plays an important role in the reduction of GO. The structural and morphological characterizations demonstrate that 1D ultrafine SnO2 nanorods are uniformly and tightly anchored on the surface of 3D graphene nanosheet aerogels. The unique 3D network structure as well as the synergistic effect between 3D graphene nanoshhet and 1D SnO2 nanorods endows the as-prepared SnO2 NRs/GA composite with the good electrochemical lithium/sodium storage performance. It delivers the high initial discharge capacity (1713 mA h g(-1) at 0.1 A g(-1) for LIBs and 539 mA h g(-1) at 0.05 A g(-1) for SIBs) and good cycle stability (869 mA h g(-1) at 0.1 A g(-1) after 50 cycles for LIBs and 232 mA h g(-1) at 0.05 A g(-1) after 100 cycles for SIBS). Moreover, the SnO2 NRs/GA composite exhibits excellent cycle stability for SIBS with a high reversible capacity of 96 mA h g(-1) at as high as 1 A g(-1) for 500 cycles. This work provides a simple method to fabricate the electro-active materials-graphene aerogel composites for high-performance LIBs and SIBS. (C) 2018 Elsevier Inc. All rights reserved.
Keywords:SnO2 nanorods;Graphene aerogel;Lithium/sodium storage;Lithium ion batteries;Sodium ion batteries