화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.531, 74-82, 2018
Gas sensor based on samarium oxide loaded mulberry-shaped tin oxide for highly selective and sub ppm-level acetone detection
Mulberry-shaped tin oxide (SnO2) hierarchical architectures and samarium oxide (Sm2O3) loaded tin oxide with different amounts (0.5, 1, 2.5, and 4 mol% Sm2O3) were successfully synthesized by facile hydrothermal synthesis method and simple isometric impregnation method. The gas sensing performance of the sensors based on pure SnO2 and Sm2O3 loaded SnO2 materials were systematically investigated. The results indicated that Sm2O3 loading considerably affected the improvement of the sensing performance of the SnO2 sensor. The 2.5 mol% Sm2O3/SnO2 exhibited the highest response (41.14) to 100 ppm acetone, the response was 2.29 times higher than that of pure SnO2 (18). In addition, with 2.5 mol% Sm2O3 loading, the low detection threshold of the sensor dropped from 500 ppb to 100 ppb. The enhanced gas sensing performance was mainly bacause of the increased oxygen vacancies created by the substitution of samarium in the SnO2 lattice, which enhanced the adsorption of oxygen and the exceptional catalytic effect of Sm2O3. (C) 2018 Elsevier Inc. All rights reserved.