화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.357, 168-174, 2018
Synthesis of FC-supported Fe through a carbothermal process for Check for immobilizing uranium
The abundant generation of uranium (U), a radioactive nuclide, engenders a severe hazard to the environment. lion based materials were used to immobilize U from water, however, the immobilization is limited by the agglomeration of nanoparticle Fe. In this study, a novel carbothermal process was proposed to synthesize flour carbon (FC) supported nano-flake Fe (Fe-FC). Scanning electron microscopy (SEM) and nitrogen isotherm adsorption-desorption analysis were conducted to characterize Fe-FC. The immobilization characteristics were investigated through batch sorption experiments. Results indicated that nano-flake was appropriately dispersed on the surface. The sorption capacity reached 19.12 mg/g when the initial concentration of U and the dosage of Fe-FC were 20 mg/L and 1 g/L, respectively. Langmuir isotherm sorption and pseudo-second-order models were fitted well to sorption experimental data. The sorption mechanism is ascribed to surface chemisorptions between U(VI) and Fe-FC. Subsequently, X-ray diffraction (XRD) analysis validated that formation of Fe2UO3 contributed to the favorable immobilization of U and that Fe2UO3 was the fate of U.