Journal of Physical Chemistry B, Vol.122, No.39, 9225-9235, 2018
Linear and Nonlinear Infrared Spectroscopies Reveal Detailed Solute-Solvent Dynamic Interactions of a Nitrosyl Ruthenium Complex in Solution
In this work, the solvation of a nitrosyl ruthenium complex, [(CH3)(4)N][RuCl3(qn)(NO)] (with qn = deprotonated 8-hydroxyquinoline), which is a potential NO-releasing molecule in the bio-environment, was studied in two bio-friendly solvents, namely deuterated dimethyl sulfoxide (dDMSO) and water (D2O). A blue-shifted NO stretching frequency was observed in water with respect to that in dDMSO, which was believed to be due to ligand-solvent hydrogen-bonding interactions, one N=O center dot center dot center dot D and particularly three Ru-Cl center dot center dot center dot D, that show competing effects on the NO bond length. The dynamic differences of the NO stretch in these two solvents were further revealed by transient pump-probe IR and two-dimensional IR results: faster vibrational relaxation and faster spectral diffusion (SD) were observed in D2O, confirming stronger-solvent solute interaction and also faster solvent structural dynamics in D2O than in DMSO. Further, a significant non-decaying residual in the SD dynamics was observed in D2O but not in DMSO, suggesting the formation of a stable solvation shell in water due to strong multi-site ligand-solvent hydrogen-bonding interactions, which is in agreement with the observed blue-shifted NO stretching frequency. This work demonstrates that small solvent molecules such as water can form a relatively rigid solvation shell for certain transition metal complexes due to cooperative ligand-solvent interactions and show slower dynamics.