Journal of Physical Chemistry B, Vol.122, No.34, 8233-8242, 2018
Isotopic Effects on Intermolecular and Intramolecular Structure and Dynamics in Hydrogen, Deuterium, and Tritium Liquids: Normal Liquid and Weakly and Strongly Cooled Liquids
Differences in properties such as phase-transition temperature and transport coefficients among liquids of different isotopic compositions, hydrogen, deuterium, and tritium, should originate from their differently pronounced nuclear quantum effects (NQEs) rather than from any subtle difference in the electronic interaction potentials. Accurate and efficient determination of structural and dynamical isotopic effects in the quantum liquids still remains as one of the challenging problems in condensed-phase physics. With a recently developed nonempirical real-time molecular dynamics method which describes non spherical molecules with the NQEs, we computationally realized and investigated dynamical and quantum isotopic effects of not only traditionally studied isotopes, hydrogen, and deuterium but also a lesser known radioisotope, tritium, in broad thermodynamic conditions from normal liquid to weakly and strongly cooled liquids, which have been hindered by rapid crystallization in spite of numerous experimental attempts at supercooling. Reproducing the previously reported experimental isotope dependence on the bond length and vibrational frequencies of hydrogen, deuterium, and tritium liquids, we further demonstrate that distinctive isotope effects appear in their intermolecular and intramolecular structure and dynamics not only at lower temperature but also at higher temperature, which none has so far been able to obtain quantitative results for realistic systems. Rationalization of their physical origins and the obtained physical insights will help future experimental searching and monitoring intermolecular and intramolecular dynamics and structures of these isotopes not only in normal liquid but also in supercooled liquid.