Journal of the American Chemical Society, Vol.140, No.43, 14087-14096, 2018
Self-Assembly of Supramolecular Fractals from Generation 1 to 5
In the seeking of molecular expression of fractal geometry, chemists have endeavored in the construction of molecules and supramolecules during the past few years, while only a few examples were reported, especially for the discrete architectures. We herein designed and constructed five generations of supramolecular fractals (G1-G5) based on the coordination-driven self-assembly of terpyridine ligands. All the ligands were synthesized from triphenylamine motif, which played a central role in geometry control. Different approaches based on direct Sonogashira coupling and/or < tpy-Ru(II)-tpy > connectivity were employed to prepare complex Ru(II)-organic building blocks. Fractals G1-G5 were obtained in high yields by precise coordination of organic or Ru(II)-organic building blocks with Zn(II) ions. Characterization of those architectures were accomplished by 1D and 2D NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), traveling-wave ion mobility mass spectrometry (TWIM-MS), and microscopy (TEM). Furthermore, the two largest fractals also hierarchically self-assemble into ordered supramolecular nanostructures either at solid/liquid interface or in solution on the basis of their well-defined scaffolds. transmission electron