Journal of the American Chemical Society, Vol.140, No.40, 13071-13077, 2018
Selective CO Evolution from Photoreduction of CO2 on a Metal-Carbide-Based Composite Catalyst
A selective CO evolution from photoreduction of CO2 in water was achieved on a noble-metal-free, carbide-based composite catalyst, as demonstrated by a CO selectivity of 98.3% among all carbon-containing products and a CO evolution rate of 29.2 mu mol h(-1), showing superiority to noble-metal-based catalyst. A rapid separation of the photogenerated electron-hole pairs and improved CO2 adsorption on the surface of the carbide component are responsible for the excellent performance of the catalyst. The high CO selectivity is accompanied by a predominant H-2 evolution, which is believed to provide a proton-deficient environment around the catalyst to favor the formation of hydrogen-deficient carbon products. The present work provides general insights into the design of a catalyst with a high product selectivity and also the carbon evolution chemistry during a photocatalytic reaction.