화학공학소재연구정보센터
Langmuir, Vol.34, No.35, 10270-10275, 2018
Micelle Structure in a Deep Eutectic Solvent for the Electrochemical Preparation of Nanomaterials
The self-aggregation of a surfactant in a deep eutectic solvent (DES) for electrodeposition is reported. The physical properties and electrochemical behavior of an anionic surfactant, sodium dodecyl sulfate (SDS), in a widely used DES, a choline chloride-urea mixture (ChCl-urea), were investigated. On the basis of surface tension and the conductivity measurements, the SDS micelles that were formed in the ChCl-urea system remained stable at higher temperatures, that is, 90 degrees C. Cyclic voltammetric and chronoamperometric data indicate that the addition of SDS to the DES may alter the nucleation and the growth processes that occur in the electrodeposition process. Scanning electron microscopy images show that the SDS adsorption prevents dendrite formation during the electrodeposition process. A simple mechanism for the formation of the SDS micelles in the DES system for electrodeposition is proposed.