- Previous Article
- Next Article
- Table of Contents
Langmuir, Vol.34, No.34, 10187-10196, 2018
Insight into the Synergistic Effect on Selective Adsorption for Heavy Metal Ions by a Polypyrrole/TiO2 Composite
Polymer/metal oxide composites are promising candidates for the treatment of water pollution. Adsorption selectivity as well as a large adsorption capacity are two key factors for treating wastewater containing multiple ions. Herein, a PPy+/TiO2(O-) composite with a heterojunction structure was first discovered to have novel selectivity toward heavy metal ions. An interesting self-doping nature of TiO2(O-) together with SO42- for PPy+ was reported. This interesting structure contributed to an impressive selective adsorption capability with an ascending order of Zn2+ > Pb2+ >> Cu2+ in a ternary ion system, where the adsorption for Cu2+ could be almost suppressed. Through the designed adsorption experiments and characterization techniques including Fourier transform infrared, thermogravimetric analysis, and X-ray photoelectron spectroscopy, a universal synergistic mechanism for PPy+/TiO2(O-) composite was first proposed and confirmed. The doping and dedoping of metal oxide (dopant) from the polymer dictates the adsorption selectivity, where the selectivity is determined by the interaction between TiO2 and heavy metal ions. This work may provide some useful guidelines for designing adsorbents with selectivity toward specific heavy metal ions.