화학공학소재연구정보센터
Journal of Process Control, Vol.9, No.5, 375-383, 1999
Globally optimal robust process control
A computational approach is developed for designing a globally optimal controller which is robust to time-varying nonlinear perturbations in the plant. This controller design problem is formulated as an optimization with bilinear matrix inequality (BMI) constraints, and is solved to optimality by a branch and bound algorithm. The algorithm is applied to a reactive ion etcher, and provides superior performance while providing robustness to nonlinear plant/model mismatch. The algorithm is also, applied to a well known benchmark problem.