화학공학소재연구정보센터
Nature Nanotechnology, Vol.13, No.10, 882-889, 2018
Energy consumption in chemical fuel-driven self-assembly
Nature extensively exploits high-energy transient self-assembly structures that are able to perform work through a dissipative process. Often, self-assembly relies on the use of molecules as fuel that is consumed to drive thermodynamically unfavourable reactions away from equilibrium. Implementing this kind of non-equilibrium self-assembly process in synthetic systems is bound to profoundly impact the fields of chemistry, materials science and synthetic biology, leading to innovative dissipative structures able to convert and store chemical energy. Yet, despite increasing efforts, the basic principles underlying chemical fuel-driven dissipative self-assembly are often overlooked, generating confusion around the meaning and definition of scientific terms, which does not favour progress in the field. The scope of this Perspective is to bring closer together current experimental approaches and conceptual frameworks. From our analysis it also emerges that chemically fuelled dissipative processes may have played a crucial role in evolutionary processes.