화학공학소재연구정보센터
Przemysl Chemiczny, Vol.97, No.7, 1144-1150, 2018
Engineering studies on the direct synthesis of methyl chlorosilane in fluidized bed reactor with multiple tubular and segmented heat transfer
The fluidized bed reactor with multiple tubular and segmented heat transfer was employed to study the effects of mass flow rate of MeCl and reaction pressure on the rate of MeCl conversion and the methyl chlorosilane yield at 300 degrees C. The rate of MeCl conversion and the yield of Me2SiCl2 were not always increased with increasing mass flow rate of MeCl at constant reaction pressure under particular operating conditions. At constant mass flow rate, the rate of MeCl conversion and the yield of Me2SiCl2 decreased first, and then increased with increasing reaction pressure. Therefore, for the fluidized bed reaction system, a synergism between the MeCl mass flow and reaction pressure in effecting the MeCl conversion rate and the yield of Me2SiCl2 was obsd. The reaction pressure for optimum yield of Me2SiCl2 was 0.30 MPa and MeCl mass flow rate was 4.5 kg/h.