Journal of Industrial and Engineering Chemistry, Vol.69, 13-17, January, 2019
Facile electrodeposition of high-density CuCo2O4 nanosheets as a high-performance Li-ion battery anode material
E-mail:
High-density CuCo2O4 nanosheets are grown on Ni foam using electrodeposition followed by air
annealing for a Li-ion battery anode. The anode exhibits a high discharge capacity of 1244 mAh/g at 0.1 A/ g (82% coulombic efficiency) and excellent high-rate performance with 95% capacity retention (1100 mAh/g after 200 cycles at 1 A/g). The outstanding battery performance of the CuCo2O4 anode is attributed to its binder-free direct contact to the current collector and high-density nanosheet morphology. The present experimental findings demonstrate that the electrodeposited binder-free CuCo2O4 material may serve as a safe, low-cost, long-cycle life anode for Li-ion batteries.
- Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energy Environ. Sci., 4, 3243 (2011)
- Zhang F, Qi L, Adv. Sci., 3, 160004 (2016)
- Cao K, Jin T, Yang L, Jiao L, Mater. Chem. Front., 1, 2213 (2017)
- Dubal DP, Patil DR, Patil SS, Munirathnam NR, Gomez-Romero P, ChemSusChem, 10, 4163 (2017)
- Kim JH, Jung MJ, Kim MJ, Lee YS, J. Ind. Eng. Chem., 61, 368 (2018)
- Jamal H, Kang BS, Lee HC, Yu JS, Lee CS, J. Ind. Eng. Chem., 64, 151 (2018)
- Jacob L, Prasanna K, Vengatesan MR, Santhoshkumar P, Lee CW, Mittal V, J. Ind. Eng. Chem., 59, 108 (2018)
- Inamdar AI, Chavan HS, Ahmed ATA, Cho S, Kim J, Jo Y, Pawar SM, Park Y, Kim H, Im H, Mater. Lett., 215, 233 (2018)
- Inamdar AI, Kalubarme RS, Kim J, Jo Y, Woo H, Cho S, Pawar SM, Park CJ, Lee YW, Sohn JI, Cha S, Kwak J, Kim H, Im H, J. Mater. Chem. A, 4, 4691 (2016)
- Kwon KM, Kim IG, Lee KY, Kim H, Kim MS, Cho WI, Choi J, Nah IW, J. Ind. Eng. Chem. (2018), doi:http://dx.doi.org/10.1016/j.jiec.2018.09.004.
- Kundu M, Karunakaran G, Kolesnikov E, Sergeevna VE, Kumari S, Gorshenkov MV, Kuznetsov D, J. Ind. Eng. Chem., 59, 90 (2018)
- Sharma Y, Sharma N, Rao GVS, Chowdari BVR, J. Power Sources, 173(1), 495 (2007)
- Jiang F, Su QM, Li HJ, Yao LB, Deng HH, Du GH, Chem. Eng. J., 314, 301 (2017)
- Cai S, Wang G, Jiang M, Wang H, J. Solid State Electrochem., 21, 1129 (2017)
- Jadhav HS, Pawar SM, Jadhav AH, Thorat GM, Seo JG, Sci. Rep., 6, 31120 (2016)
- Ma J, Wang H, Yang X, Chai Y, Yuan R, J. Mater. Chem. A, 3, 12038 (2015)
- Zhang H, Tang ZY, Zhang K, Wang L, Shi HM, Zhang GH, Duan HG, Electrochim. Acta, 247, 692 (2017)
- Kang W, Tang Y, Li W, Li Z, Yang X, Xu J, Lee CS, Nanoscale, 6, 6551 (2014)
- Bhardwaj M, Suryawanshi A, Fernandes R, Tonda S, Banerjee A, Kothari D, Ogale S, Mater. Res. Bull., 90, 303 (2017)
- Zheng F, Zhu D, Chen Q, ACS Appl. Mater. Interfaces, 6, 9256 (2014)
- Zhao L, Wang L, Yu P, Tian C, Feng H, Diao Z, Fu H, Dalton Trans., 46, 4717 (2017)
- Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XW, Energy Environ. Sci., 5, 7883 (2012)
- Abbasi L, Arvand M, Appl. Surf. Sci., 445, 272 (2018)
- Liu S, Hui KS, Hui KN, ACS Appl. Mater. Interfaces, 8, 3258 (2016)
- Liao Q, Li N, Jin S, Yang G, Wang C, ACS Nano, 9, 5310 (2015)
- Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D, ACS Appl. Mater. Interfaces, 6, 1773 (2014)
- Deng D, Lee JY, Nanotechnology, 22, 355401 (2011)
- Sun S, Wen Z, Jin J, Cui Y, Lu Y, Microporous Mesoporous Mater., 169, 242 (2013)
- Wang Y, Roller J, Maric R, J. Power Sources, 378, 511 (2018)