Journal of Industrial and Engineering Chemistry, Vol.69, 370-378, January, 2019
Residence time distribution in rapid multiphase reactors
E-mail:,
Residence time distribution (RTD) provides information about average hydraulic residence time and the distribution of material in the reactor. A method for determining RTD for reactors with very short hydraulic residence times is deconvolution based on extraction of real RTD by the analysis of a non-ideal input signal. The mean residence time and dispersion were determined for the spinning fluids reactor (SFR). For the first time the deconvolution method was performed for a system where the tracer pulse signal is wider than actual RTD of the examined device. A prediction model for of the SFR was also developed, and validated.
- Wen CY, Fan LT, Models for Flow Systems and Chemical Reactors, Dekker, 1975.
- Fogler HS, Elements of Chemical Reaction Engineering, Prentice Hall, 2016.
- Engisch W, Muzzio F, J. Pharm. Innov., 11, 64 (2016)
- Datta A, Gupta RK, Goswami S, Sharma VK, Bhunia H, Singh D, et al., Appl. Radiat. Isot., 130, 245 (2017)
- Bachmann P, Tsotsas E, Procedia Eng., 102, 790 (2015)
- Doost AS, Ries E, Becker LG, Burkle S, Wagner S, Ebert V, Dreizler A, di Mare F, Sadiki A, Janicka J, Chem. Eng. Sci., 156, 97 (2016)
- MacMullin RB, Weber M, Trans. Am. Inst. Chem. Eng., 31, 409 (1935)
- Danckwerts PV, Chem. Eng. Sci., 2, 1 (1953)
- Aranowski R, Wojewodka P, Zielinska-Jurek A, Bokotko R, Jungnickel C, Chem. Eng. Process., 116, 40 (2017)
- Hunt BR, Math. Biosci., 8, 161 (1970)
- Pant HJ, Sharma VK, Shenoy KT, Sreenivas T, Appl. Radiat. Isot., 97, 40 (2015)
- Dudukovic MP, Chemical Reactor Design and Technology, Springer, Dordrecht, Netherlands, 1986, doi:http://dx.doi.org/10.1007/978-94-009-4400-8.
- Mills PL, Dudukovic MP, Comput. Chem. Eng., 13, 881 (1989)
- Pandit AB, Doshi YK, Int. J. Chem. Reactor Eng., 3 (2005)
- Harris AT, Davidson JF, Thorpe RB, Chem. Eng. J., 89(1-3), 127 (2002)
- Obonukut ME, Bassey PG, Int. J. Sci. Res. Educ., 4, 4767 (2016)
- van Gelder KB, Westerterp KR, Chem. Eng. Technol., 13, 27 (1990)
- Datye AK, Lemlich R, Int. J. Multiphase Flow, 9, 627 (1983)
- Chang KS, Lemlich R, J. Colloid Interface Sci., 73, 224 (1980)
- Levenspiel O, Chemical Reaction Engineering, Wiley, 1999.
- Briens CL, Margaritis A, Wild G, Chem. Eng. Sci., 50(2), 279 (1995)
- Saber M, Cuong PH, Edouard D, Ind. Eng. Chem. Res., 51(46), 15011 (2012)
- Nauman EB, Ind. Eng. Chem. Res., 47(10), 3752 (2008)
- Parruck B, Riad SM, IEEE Trans. Instrum. Meas., 33, 281 (1984)
- Boskovic D, Loebecke S, Chem. Eng. J., 135, 138 (2007)
- Haseidl F, Konig P, Hinrichsen O, Chem. Eng. Technol., 39(12), 2435 (2016)
- Abou Hweij K, Azizi F, Chem. Eng. J., 279, 948 (2015)
- Mao ZS, Xiong TY, Chen JY, Chem. Eng. Commun., 169, 223 (1998)
- Nahman NS, Guillaume ME, Deconvolution of Time Domain Waveforms in the Presence of Noise NASA STI/Recon Tech. Rep. 82, (1981).
- Sheikholeslami M, Jafaryar M, Bateni K, Ganji DD, Indian J. Phys., 92, 205 (2018)
- Sheikholeslami M, Ziabakhsh Z, Ganji DD, Colloids Surf. A: Physicochem. Eng. Asp., 520, 201 (2017)
- Sheikholeslami M, Domairry D, Moradi R, J. Mol. Liq., 246, 103 (2017)
- OriginLab Corporation, Origin Pro 2017 (64bit), (2017).
- Hunt BR, Math. Biosci., 10, 215 (1971)
- Aryadoust V, Psychol. Test Assess. Model., 57, 301 (2015)
- Schmidt M, Lipson H, Eureqa, 2013.
- Kłosowska-Chomiczewska IE, Artichowicz W, Preiss U, Jungnickel C, Phys. Chem. Chem. Phys., 19, 25309 (2017)
- Klosowska-Chomiczewska IE, Medrzycka K, Hallmann E, Karpenko E, Pokynbroda T, Macierzanka A, Jungnickel C, J. Colloid Interface Sci., 488, 10 (2017)
- Das A, Miller JD, Int. J. Miner. Process., 47(3), 251 (1996)
- Miller JD, Kinneberg DJ, Fast flotation with an air-sparged hydrocyclone, MINTEK 50 International Conference on Mineral Science and Technology (1984).
- Yoshida J, Chem. Commun., 4509 (2005)
- Yoshida JI, Nagaki A, Yamada T, Chem. A Eur. J., 14, 7450 (2008)