화학공학소재연구정보센터
Macromolecular Research, Vol.26, No.12, 1179-1184, December, 2018
Formation of a Micellar Pattern on Top of the Cylindrical Morphology in (PS)4-b-PLA Copolymer Thin Films
E-mail:
Previously, our thin film study of a block copolymer (BCP) consisting of dibranched polystyrene (PS) and linear polylactide (PLA) demonstrated the thickness- dependent distribution of two different parallel cylindrical orientations, “(10)- on” and “(01)-on”. In this paper, we studied the thin film phase behavior of a more branched BCP in order to understand the effect of degree of branching on the thin film morphology. The BCP employed in this study is composed of tetrabranched PS and linear PLA blocks. The grazing incidence small angle X-ray scattering (GISAXS) analysis indicated that the thin films exclusively preferred the “(10)-on” orientation due to the better wettability of the PLA block on the SiO2 substrate. As a unique phenomenon, in contrast to the cylinder structure in the film interior, micellar domains were revealed on the top layer of the films thicker than 79 nm, as identified by atomic force microscopy. The appearance of micellar domains could be explained by the alleviation of the packing frustration of the highly branched BCP assembly at the film surface.
  1. Jo A, Joo W, Jin WH, Nam H, Kim JK, Nat. Nanotechnol., 4(11), 727 (2009)
  2. Kang Y, Walish JJ, Gorishnyy T, Thomas EL, Nat. Mater., 6(12), 957 (2007)
  3. Albert JNL, Bogart TD, Lewis RL, Beers KL, Fasolka MJ, Hutchison JB, Vogt BD, Epps TH, Nano Lett., 11, 1351 (2011)
  4. Wang Y, Becker M, Wang L, Liu J, Scholz R, Peng J, Gosele U, Christiansen S, Kim DH, Steinhart M, Nano Lett., 9, 2384 (2009)
  5. Jeong SJ, Moon HS, Kim BH, Kim JY, Yu J, Lee S, Lee MG, Choi H, Kim SO, ACS Nano, 4, 5181 (2010)
  6. Son I, Kim JH, Lee B, Kim C, Yoo JY, Hyun K, Wu JP, Lee JH, Macromol. Res., 24(3), 235 (2016)
  7. Yoo SI, Sohn BH, Macromol. Res., 24(3), 292 (2016)
  8. Hamley IW, The Physics of Block Copolymers, Oxford University Press, New York, 1998.
  9. Bates FS, Fredrickson GH, Ann. Rev. Phys. Chem., 41, 525 (1990)
  10. Forster S, Khandpur AK, Zhao J, Bates FS, Hamley IW, Ryan AJ, Bras W, Macromolecules, 27(23), 6922 (1994)
  11. Ahn JH, Zin WC, Macromolecules, 33(2), 641 (2000)
  12. Heo KY, Yoon JW, Jin SW, Kim JH, Kim KW, Shin TJ, Chung BH, Chang TY, Ree MH, J. Appl. Crystallogr., 41, 281 (2008)
  13. Kim MI, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Hasegawa H, Ito K, Takenaka M, Macromolecules, 42(14), 5266 (2009)
  14. Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Kim MI, Hasegawa H, Macromolecules, 40(13), 4399 (2007)
  15. Matsen MW, Macromolecules, 28(17), 5765 (1995)
  16. Matsen MW, Bates FS, Macromolecules, 29(4), 1091 (1996)
  17. Matsen MW, J. Phys. Condens. Matter, 14, R21 (2002)
  18. Knoll A, Tsarkova L, Krausch G, Nano Lett., 7, 843 (2007)
  19. Stein GE, Kramer EJ, Li XF, Wang J, Macromolecules, 40(7), 2453 (2007)
  20. Matsen MW, Macromolecules, 43(3), 1671 (2010)
  21. Matsen MW, Macromolecules, 45(4), 2161 (2012)
  22. Ha JG, Song J, Lee JK, Cho BK, Zin WC, Chem. Commun., 48, 3418 (2012)
  23. Song J, Kim HY, Cho BK, Bull. Korean Chem. Soc., 28, 1771 (2007)
  24. Olayo-Valles R, Guo SW, Lund MS, Leighton C, Hillmyer MA, Macromolecules, 38(24), 10101 (2005)
  25. Yoon J, Yang SY, Lee B, Joo W, Heo K, Kim JK, Ree M, J. Appl. Crystallogr., 40, 305 (2007)
  26. Grason GM, Kamien RD, Macromolecules, 37(19), 7371 (2004)
  27. Grason GM, Phys. Rep., 433, 1 (2006)
  28. Olmsted PD, Milner ST, Macromolecules, 31(12), 4011 (1998)
  29. Sohn KE, Kojio K, Berry BC, Karim A, Coffin RC, Bazan GC, Kramer EJ, Sprung M, Wang J, Macromolecules, 43(7), 3406 (2010)