화학공학소재연구정보센터
Clean Technology, Vol.24, No.4, 287-292, December, 2018
활성탄의 물리적 특성에 따른 이산화탄소 흡착 특성
Characteristics of Carbon Dioxide Adsorption with the Physical Property of Activated Carbon
E-mail:
초록
효율적으로 이산화탄소를 처리할 수 있는 활성탄을 제조하기 위하여 활성탄의 물리적 특성이 이산화탄소 흡착에 미치는 영향을 조사하였다. 소나무 톱밥과 석탄이 활성탄의 원료로 사용되었고, 제조된 활성탄의 비표면적, 미세기공 부피, 중기공 부피를 분석하였다. 제조된 활성탄은 열중량 분석기를 이용하여 이산화탄소 흡착량을 결정하였다. 그리고 이산화탄소 흡착량 결과를 활성탄의 비표면적, 미세기공 부피, 중기공 부피에 따라 분석하였다. 실험 결과, 소나무 톱밥 활성탄과 석탄 활성탄의 비표면적과 미세기공 부피는 이산화탄소 흡착량과 높은 연관성을 보인 반면에 중기공 부피는 이산화탄소 흡착에 거의 영향을 미치지 않았다. 따라서 활성탄의 비표면적과 미세기공 부피를 극대화하는 것이 효율적인 이산화탄소 처리를 위해 매우 중요한 요소로 나타났다.
Effect of physical property of activated carbon on its carbon dioxide adsorption was investigated for the effective control of carbon dioxide. Pinewood sawdust and coal were used as raw materials of activated carbon. Specific surface area, micropore volume and mesopore volume of the prepared activated carbons were determined, respectively. The prepared activated carbons were analyzed for their adsorption capacity of carbon dioxide. The adsorption capacity was then presented with respect to the surface area, micropore volume and mesopore volume, respectively. As a result, the specific surface area and micropore volume of both pinewood and coal activated carbon were highly related to its carbon dioxide capacity. Its mesopore volume hardly affected its carbon dioxide capacity. Preparation of activated carbon with high specific surface area and micropore volume was found to be critical to the effective control of carbon dioxide.
  1. EIA., “Emission of Greenhouse Gases in the United States,” DOE/EIA-0573, U. S. Energy Information Administration (2009).
  2. Choi S, Jeffrey H, Drese HJ, Jones CW, ChemSusChem, 2(9), 796 (2009)
  3. Rochelle GT, Science, 325(5948), 1652 (2009)
  4. Veltman K, Singh B, Hertwich EG, Environ. Sci. Technol., 44(4), 1496 (2010)
  5. Yu CH, Huang CH, Tan CS, Aerosol Air Qual. Res., 12(5), 745 (2012)
  6. Creamer AE, Gao B, Zhang M, Chem. Eng. J., 249, 174 (2014)
  7. Huang YF, Chiueh PT, Shih CH, Lo SL, Sun LP, Zhong Y, Qiu CS, Energy, 84, 75 (2015)
  8. Creamer AE, Gao B, Wang SS, Chem. Eng. J., 283, 826 (2016)
  9. Zhang Y, Marot-Valer MM, Tang Z, Fuel Chem. Div. Prepr., 49(1), 304 (2004)
  10. Plaza MG, Pevida C, Arias B, Fermoso J, Casal MD, Martin CF, Rubiera F, Pis JJ, Fuel, 88(12), 2442 (2009)
  11. Radosz M, Hu XD, Krutkramelis K, Shen YQ, Ind. Eng. Chem. Res., 47(10), 3783 (2008)
  12. Xiong Z,Shihong Z, Haiping Y, Tao S, Chen Y, Hanping C, Bioenergy Res., 6(4), 1147 (2013)
  13. Fan X, Zhang L, Zhang G, Shu Z, Shi J, Carbon, 61, 423 (2013)
  14. Liu L, Deng QF, Ma TY, Lin XZ, Hou XX, Liu YP, Ynag ZY, J. Mater. Chem., 21(40), 16001 (2011)
  15. Zhao Y, Zhao L, Yao KX, Yang Y, Zhang Q, Han Y, J. Mater. Chem., 22(37), 19726 (2012)
  16. Sevilla M, Fuertes AB, Energy Environ. Sci., 4(5), 1765 (2011)
  17. Hao WM, Bjorkman E, Lilliestrale M, Hedin N, Appl. Energy, 112, 526 (2013)
  18. Presser V, Mc Donough J, Yeon SH, Gogotsi Y, Energy Environ. Sci., 4(8), 3059 (2011)
  19. Min H, Ahmad T, Lee SS, Energy Fuels, 31(1), 724 (2017)
  20. Min H, Ahmad T, Park M, Lee SS, . Korean Soc. Atmos. Environ., 31(3), 302 (2015)