화학공학소재연구정보센터
Clean Technology, Vol.24, No.4, 301-306, December, 2018
디젤차량 배기가스의 PM 제거에 관한 매연여과장치 전산해석
A CFD Analysis on DPF for the Removal of PM from the Emission of Diesel Vehicle
E-mail:
초록
최근 미세먼지의 증가로 인해 디젤 자동차로부터 발생되는 PM에 대한 규제가 강화되고 있다. 디젤 자동차의 배기가스를 제거하는 후처리 장치인 매연여과장치(diesel particulate filter, DPF)에 대한 관심이 급증하고 있다. 따라서 DPF 효율 향상의 하나로 DPF 내의 압력강하를 줄여서 필터 및 재생(Regeneration)의 효율을 증가시키고 있다. 본 연구에서는 ANSYS FLUENT를 이용하여 5.66" SiC와 Cordierite DPF의 셀 밀도, 채널 형상, 벽두께, 입·출구 채널 비에 따른 압력강하 영향을 시뮬레이션했다. 실험결과로서 200 CPSI보다 300 CPSI에서 압력강하가 작게 나타났으며, Anisotropy과 O/S 셀이 Isotropy보다 약 1,301Pa 작은 압력강하를 나타냈다. 공극률은 10% 증가할 때 마다 압력강하가 약 300 Pa씩 작아졌고, 벽 두께에 따른 영향은 0.05 mm 두꺼워질수록 약 500 Pa 씩 커지는 경향을 나타냈다.
Recently, due to the increase in the fine dust, regulations on PM generated from diesel cars are strengthened. There is a growing interest in diesel particulate filters (DPFs), a post-treatment device that removes exhaust gases from diesel vehicles. Therefore, one of the enhancements of the DPF efficiency is to reduce the pressure drop in the DPF, thereby increasing the efficiency of the filter and regeneration. In this study, the effect of cell density, channel shape, wall thickness, and inlet channel ratio of 5.66" SiC and Cordierite DPF on the pressure drop in DPF was investigated using ANSYS FLUENT simulator. As a result of the experiment, the pressure drop was smaller at 300 CPSI than 200 CPSI, and the anisotropy and O / S cell showed less than Isotropy by pressure drop of about 1,000 Pa. As the porosity increased by 10% the pressure drop was reduced by about 300 Pa and as the wall thickness increased by 0.05 mm, the pressure drop was increased by about 500 Pa.
  1. Jung SC, Yoon WS, Trans. Korean Soc. Automotive Eng., 15(1), 78 (2007)
  2. Bissettm EJ, Chem. Eng. Sci., 39, 1233 (1984)
  3. Konstandopoulos AG, Skaperdas E, Warren J, Allansson R, Optimizes Filter Design and Selection Criteria for Continuously Regenerating Diesel Particulate Traps. SAE Paper 1999-01-0468 (1999).
  4. Haralampous OA, Kandylas Koltsakis GC, Samaras ZC, Inter. J. Engine Res., 5(2), 149 (2004)
  5. Ogyu K, Ohno K, Hong S, Komori T, Ash Storage CaPacity Enhancement of Diesel Particulate Filter. SAE Paper 2004-01-0949 (2004).
  6. Wurzenberger JC, Kutschi S, Advanced Simulation Technologies for Diesel Particulate Filters, a Fundamental Study on Asymmetric Channel Geometries. SAE Paper 2007-01-1137 (2007).
  7. Day PJ, Socha LS, The design of Automotive Catalyst Supports for Improved Pressure Drop and Conversion Efficiency. SAE Paper 1991-02-01 (1991).
  8. Konstandopoulos AG, Skaperdas E, Masoudi M, Microstructural Properties of Soot Deposits in Diesel Particulate Traps. SAE Paper 2002-01-1015 (2002).
  9. Konstandopoulos AG, Kostoglou M, Vlachos N, Kladopoulou E, Progress in diesel Particulate Filter Simulation. SAE Paper 2005-01-0946 (2005).
  10. Konstandopoulos AG, Flow Resistance Descriptors for Diesel Particulate Filters: Definitions, Measurements and Testing. SAE Paper 2003-01-0846 (2003).
  11. Yamaguchi S, Fujii S, Kai R, Miyazaki M, Miyairi Y, Miwa S, Busch P, Design Optimization of Wall Flow Type Catalyzed Cordierite Particulate Filter for Heavy Duty Diesel, SAE Technical Paper 2005-01-0666 (2005).
  12. Lee, Baek, A Modeling on the Diesel Emission Characteristics in CPF and LNT Kaist, xi, p. 109 (2012).
  13. Hashimoto S, Miyairi Y, Hamanaka T, Matsubara R, Harada T, Miwa S, SiC and Cordierite Diesel Particulate Filters Designed for Low Pressure Drop and Catalyzed, Uncatalyzed Systems. SAE Special Publications 2002-01-0322 (2002).