화학공학소재연구정보센터
Clean Technology, Vol.24, No.4, 339-347, December, 2018
염화알칼리에 의한 과열기 소재의 고온부식 영향
High Temperature Corrosion Effect of Superheater Materials by Alkali Chlorides
E-mail:
초록
화석연료로 인한 환경문제 및 기후변화 대응을 위해 신재생에너지 공급비중은 매년 증가하고 있으며 현재 폐기물 에너지는 신재생에너지 생산량의 60% 가량을 차지하고 있다. 그러나 폐기물은 화석연료에 비해 낮은 발열량을 가지고 여러 유해물질이 포함되어 있어 발전용 보일러에 적용 시 다양한 문제를 발생시킨다. 특히 연료 내 염소성분은 보일러 열교환부에 슬래깅 및 파울링을 증가시켜 열효율 감소와 고온부식의 주요 원인이 되며 설비 가동률을 낮추고 운전비용을 증가시킨다. 본 연구에서는 염화알칼리에 의한 과열기 소재의 부식특성 분석을 위해 과열기용 주요 금속소재(ASME SA213/ASTM A213 T2, T12 and T22 합금)를 대상으로 고온부식 실험을 수행하고 무게 감량법과 주사전자현미경 에너지분산분광기(SEM-EDS)를 활용해 다양한 조건에 따른 부식특성을 분석하였다. 실험 결과 온도 및 염화물 함량이 높을수록 부식이 증가하였으며 NaCl 보다 KCl의 부식성이 더 높음을 확인하였다. 또한 소재의 크롬함량이 높을수록 염화알카리에 대한 내부식 특성이 우수하게 나타났다.
In order to cope with environmental problems and climate change caused by fossil fuels, renewable energy supply is increasing year by year. Currently, waste energy accounts for 60% of renewable energy production. However, waste has a lower calorific value than fossil fuels and contains various harmful substances, which causes serious problems when applied to power generation boilers. In particular, the chlorine in the waste fuel increases slagging and fouling of boiler heat exchangers, leading to a reduction in thermal efficiency and the main cause of high temperature corrosion, lowering facility operation rate and increasing operating cost. In this study, the high temperature corrosion experiments of superheater materials (ASME SA213/ASTM A213 T2, T12 and T22 alloy steel) by alkali chlorides were conducted, and their corrosion characteristics were analyzed by the weight loss method and SEM-EDS. Experiments show that the higher the temperature and chloride content, the more corrosion occurs, and KCl further corrodes the materials compared to NaCl under the same condition. In addition, the higher the chromium content of the material, the better the corrosion resistance to the alkali chlorides.
  1. Moon JH, Lee JW, Lee UD, Bioresour. Technol., 102(20), 9550 (2011)
  2. Leckner B, Waste Manage., 37, 13 (2015)
  3. Viklund P, “Superheater Corrosion in Biomass and Waste Fired Boilers,” Ph.D Dissertation, KTH, Stockholm (2013).
  4. Patumsawad S, Cliffe KR, Energy Conv. Manag., 43(17), 2329 (2002)
  5. Shaop S, “Could Biomass Boilers be Operated at Higher Steam Efficiencies (Higher temps.)?,” International Workshop on High Temperature Corrosion in Biomass Installation (2014).
  6. Persson K, Brostrom M, Carlsson J, Nordin A, Backman R, Fuel Process. Technol., 88(11-12), 1178 (2007)
  7. Karlsson S, Pettersson J, Johansson LG, Oxidat. Metals,, 78(1-2), 83 (2012)
  8. Enestam S, Bankiewicz D, Tuiremo J, Makela K, Hupa M, Fuel, 104, 294 (2013)
  9. Viklund P, Hjornhede A, Henderson P, Stalenheim A, Pettersson R, Fuel Process. Technol., 105, 106 (2013)
  10. Wang SL, Li HX, Zhang XF, Yi S, Mater. Chem. Phys., 113(2-3), 878 (2009)
  11. Xu T, Pang S, Li H, Zhangf T, J. Non-Cryst. Solids, 410, 20 (2015)
  12. Alexander PA, The Mechanism of Corrosion by Impurities, Londen, Butterwoths, 571 (1963).
  13. Lehmusto J, Skrifvars BJ, Yrjas P, Hupa M, Corrosion Sci., 53(10), 3315 (2011)
  14. Kim BJ, Ryu CK, Lee UD, Kim YD, Lee JW, Song JH, Clean Technol., 23(3), 223 (2017)
  15. Lee DB, J. Korean Inst. Surface Eng., 49(1), 14 (2016)
  16. Steenari BM, Lundberg A, Pettersson H, Wilewska-Bien m, andersson D, Energy Fuels, 23(11), 5655 (2009)
  17. Steenari BM, Lindqvist O, Biomass Bioenerg., 14(1), 67 (1998)
  18. Gilbe C, Ohman M, Lindstrom E, Bostrom D, Backman R, Samuelsson R, Burvalll J, Energy Fuels, 22(5), 3536 (2008)
  19. Lindstrom E, Sandstrom M, Bostrom D, Ohman M, Energy Fuels, 21(2), 710 (2007)
  20. Wang L, Skjevrak G, Hustad JE, Gronli MG, Fuel Process. Technol., 96, 88 (2012)
  21. Elled AL, Davidsson KO, Amand LE, Biomass Bioenerg., 34(11), 1546 (2010)
  22. Adams EM, Peters KE, Diederen SW, Winjhoven PF, “Preventing boiler corrosion,” Waste Management World (2004).