- Previous Article
- Next Article
- Table of Contents
Clean Technology, Vol.24, No.4, 371-379, December, 2018
백금/헥사알루미네이트 펠렛 촉매를 이용한 친환경 액체 추진제 분해
Decomposition of Eco-friendly Liquid Propellants over Platinum/Hexaaluminate Pellet Catalysts
E-mail:
초록
본 연구의 목적은 친환경 액체 추진제 분해반응에 적용하기 위하여 백금이 담지된 헥사알루미네이트 펠렛 촉매를 개발하는 것이다. 초음파 분무 열분해법으로 제조한 hexaaluminate를 지지체로 사용하고 백금을 활성금속으로 사용한 펠렛 촉매를 두 가지 방법으로 제조하였다. 백금 전구체를 헥사알루미네이트 분말에 담지한 후에 바인더를 첨가하여 성형한 펠렛 촉매의 경우(M1 method 촉매), 550 ℃에서 소성한 촉매는 메조기공이 잘 발달하였다. 그러나 이 촉매를 1,200 ℃에서 소성하면 메조 기공이 거의 무너지고 약간의 거대기공만 존재하였다. 반면에, 헥사알루미네이트를 성형하여 펠렛을 제조한 후, 펠렛 위에 백금을 담지한 촉매의 경우(M2 method 촉매), 1,200 ℃에서 소성한 후에도 표면적과 메조기공이 잘 유지되는 것으로 나타났다. 또한, 백금 분산도 측면에서도 M2 method로 제조한 촉매의 내열성이 더 우수하였다. 펠렛 촉매 제조 방법과 소성온도가 ammonium dinitramide (ADN) 또는 hydroxyl ammonium nitrate (HAN)을 주성분으로 하는 액상 추진제의 분해반응에 미치는 영향을 분석하였다. ADN 기반 액체 추진제 및 HAN 기반 액체추진제의 분해반응에서 Pt/hexaaluminate 펠렛 촉매를 사용하면 분해 개시 온도를 큰 폭으로 내릴 수 있음을 확인하였다. 특히, M2 method로 제조한 촉매의 경우, 소성온도를 1,200 ℃로 올린 경우에도 분해 개시 온도가 큰 변화를 보이지 않았다. 따라서 M2 method로 제조한 Pt/hexaaluminate 펠렛 촉매가 내열성을 보유하고 있으며, 친환경 액상 추진제의 분해 반응용 촉매로서 잠재력이 있다는 것을 확인하였다.
The objective of this study is to develop a platinum/hexaaluminate pellet catalyst for the decomposition of eco-friendly liquid propellant. Pellet catalysts using hexaaluminate prepared by ultrasonic spray pyrolysis as a support and platinum as an active metal were prepared by two methods. In the case of the pellet catalyst formed by loading the platinum precursor onto the hexaaluminate powder and then adding the binder (M1 method catalyst), the mesopores were well developed in the catalyst after calcination at 550 ℃. However, when this catalyst was calcined at 1,200 ℃, the mesopores almost collapsed and only a few macropores existed. On the other hand, in the case of a catalyst in which platinum was supported on pellets after the pellet was produced by extrusion of hexaaluminate (M2 method catalyst), the surface area and the mesopores were well maintained even after calcination at 1,200 ℃. Also, the catalyst prepared by the M2 method showed better heat resistance in terms of platinum dispersion. The effects of preparation method and calcination temperature of Pt/hexaaluminate pellet catalysts on the decomposition of liquid propellant composed mainly of ammonium dinitramide (ADN) or hydroxyl ammonium nitrate (HAN) were investigated. It was confirmed that the decomposition onset temperature during the decomposition of ADN- or HAN- based liquid propellant could be reduced significantly by using Pt/hexaaluminate pellet catalysts. Especially, in the case of the catalyst prepared by the M2 method, the decomposition onset temperature did not show a large change even when the calcination temperature was raised at 1,200 ℃. Therefore, it was confirmed that Pt/ hexaaluminate pellet catalyst prepared by M2 method has heat resistance and potential as a catalyst for the decomposition of the eco-friendly liquid propellants.
Keywords:Liquid propellant;Pt/hexaaluminate pellet catalyst;Ultrasonic spray pyrolysis;Ammonium dinitramide;Hydroxyl ammonium nitrate
- Tanaka N, Matsuo T, Furukawa K, Nishida M, Suemori S, Yasutake A, Mitsubishi Heavy Ind. Tech. Rev., 48(4), 44 (2011)
- McLean CH, Deininger WD, Joniatis J, Aggarwal PK, Spores RA, Deans M, Yim JT, Bury K, Martinez J, Cardiff EH, Bacha CE, AIAA., 1-21 (2014).
- Ide Y, Takahashi T, Iwai K, Nozoe K, Habu H, Tokudome S, Procedia Eng., 99, 332 (2015)
- Amrousse R, Katsumi T, Itouyama N, Azurna N, Kagawa H, Hatai K, Ikeda H, Hori K, Combust. Flame, 162(6), 2686 (2015)
- Amrousse R, Hori K, Fetimi W, Farhat K, Appl. Catal. B: Environ., 127, 121 (2012)
- Amrousse R, Katsumi T, Azuma N, Hori K, Combust. Flame, 176, 334 (2017)
- Zhang T, Li GX, Yu YS, Sun ZY, Wang M, Chen J, Energy Conv. Manag., 87, 965 (2014)
- Lee H, Litzinger TA, Combust. Flame, 135(1-2), 151 (2003)
- Kleimark J, Delanoe R, Demaire A, Brinck T, Theor. Chem. Acc., 132, 1 (2013)
- Courtheoux L, Amariei D, Rossignol S, Kappenstein C, Appl. Catal. B: Environ., 62(3-4), 217 (2006)
- Vyazovkin S, Wight CA, J. Phys. Chem. A, 101(31), 5653 (1997)
- Gronland TA, Westerberg B, Bergman G, Anflo K, et al., “Reactor for Decomposition of Ammonium Dinitramide-based Liquid Monopropellants and Process for the Decomposition,” US7137244B2 (2006).
- Machida M, Eguchi K, Arai H, J. Catal., 120, 377 (1989)
- Gardner TH, Shekhawat D, Berry DA, Smith MW, Salazar M, Kugler EL, Appl. Catal. A: Gen., 323, 1 (2007)
- Tsai SC, Song YL, Tsai CS, Yang CC, Chiu WY, Lin HM, J. Mater. Sci., 39(11), 3647 (2004)
- Suh WH, Suslick KS, J. Am. Chem. Soc., 127(34), 12007 (2005)
- Kim KH, Kang YC, Kim CH, Park HD, Choi SY, J. Korean Ceram. Soc., 38(2), 173 (2001)
- Heo S, Hong S, Jeon BK, Li C, Kim JM, Jo YM, Kim W, Jeon JK, J. Nanosci. Nanotechnol., 18(1), 353 (2018)
- Hong S, Jeo S, Li C, Jeon BK, Kim JM, Jo YM, Kim W, Jeon JK, J. Nanosci. Nanotechnol., 18(2), 1427 (2018)
- Baek CM, Jung KY, Park KY, Park SB, Cho SB, Korean Chem. Eng. Res., 46(5), 880 (2008)
- Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87(9-10), 1051 (2015)
- Kim S, Lee DW, Lee JY, Eom HJ, Lee HJ, Cho IH, Lee KY, J. korean Ceram. Soc., 335(1-2), 60 (2011)
- Sohn JM, Woo SI, Korean Chem. Eng. Res., 45(3), 209 (2007)