화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.12, 725-731, December, 2018
메탄과 수소의 혼합 가스에 의한 산화주석의 환원
Reduction of SnO2 by a Mixed Gas of Methane and Hydrogen
E-mail:
We investigate the reduction of SnO2 and the generation of syngas(H2, CO) using methane(CH4) and hydrogen(H2) or a mixed gas of methane and hydrogen as a reducing gas. When methane is used as a reducing gas, carbon is formed by the decomposition of methane on the reduced Sn surface, and the amount of generated carbon increases as the amount and time of the supply of methane increases. However, when hydrogen is used as a reducing gas, carbon is not generated. High purity Sn of 99.8 % and a high recovery rate of Sn of 93 % are obtained under all conditions. The effects of reducing gas species and the gas mixing ratio on the purity and recovery of Sn are not significantly different, but hydrogen is somewhat more effective in increasing the purity and recovery rate of Sn than methane. When 1 mole of methane and 1 mole of hydrogen are mixed, a product gas with an H2/CO value of 2, which is known to be most useful as syngas, is obtained.
  1. Thoburn JT, Tin in the world economy, p.224, Edinburgh, UK: Edinburgh University Press (1994).
  2. Hennart JF, J. Econ. Behav. Organ., 9, 281 (1988)
  3. Snaith HJ, Ducati C, Nano Lett., 10, 1259 (2010)
  4. Suehle JS, Cavicchi RE, Gaitan M, Semancik S, IEEE Electron Device Lett., 14, 118 (1993)
  5. Nayral C, Ould-Ely T, Maisonnat A, Chaudret B, Fau P, Lescouzeres L, Peyre-Lavigne A, Adv. Mater., 11(1), 61 (1999)
  6. Citti O, Williams JA, Mcgarry CN, Tin oxide material with improved electrical properties for glass melting, 8, Google Patents (2010).
  7. Betz U, Olsson MK, Marthy J, Atamny F, Surf. Coat. Technol., 200, 5751 (2006)
  8. Ginley DS, Bright C, MRS Bull., 25, 15 (2000)
  9. Lim H, Yang HJ, Kim JW, Bae JS, Kim JW, Jeong B, Crumlin E, Park S, Mun BS, J. Appl. Phys., 120, 205306 (2016)
  10. Park HJ, Kim J, Won JH, Choi KS, Lim YT, Shin JS, Park JU, Thin Solid Films, 615, 8 (2016)
  11. Liu L, Yellinek S, Valdinger I, Donval A, Mandler D, Electrochim. Acta, 176, 1374 (2015)
  12. Hussain SQ, Kim S, Ahn S, Park H, Le AHT, Lee S, Lee Y, Lee JH, Yi J, Met. Mater. Int., 20, 565 (2014)
  13. Lee J, Method for Recycling Tin Oxide or Tin from Plating Tin Waste Liquid, Kor. Patent, 10-2004-0107786 (2004).
  14. Ahn JW, Seo JS, J. of Korean Inst. of Resources Recycling, 18, 44 (2009).
  15. Rabah M, Hydrometallurgy, 47, 281 (1998)
  16. Sripriya R, Murty CVGK, Int. J. Miner. Process., 75(1-2), 123 (2005)
  17. Mitchell A, Parker R, Miner. Eng., 1, 53 (1988)
  18. Shin GW, Kang YH, Ahn JW, Hyeon SG, J. of Korean Inst. of Resources Recycling, 24, 51 (2015).
  19. Kang HN, Lee JN, Kim JY, Hydrometallurgy, 110, 120 (2011)
  20. Han T, Sohn Y, Ha H, Yoo M, Kim S, Lee SR, Kim HY, Han JH, Korean J. Met. Mater., 56, 384 (2018)
  21. Ha H, Yoo M, An H, Shin K, Han T, Sohn Y, Kim S, Lee SR, Han JH, Kim HY, Sci. Rep., 7, 14427 (2017)
  22. Upham DC, Agarwal V, Khechfe A, Snodgrass ZR, Gordon MJ, Metiu H, McFarland EW, Science, 358(6365), 917 (2017)
  23. Kim HY, Park JN, Henkelman G, Kim JM, ChemSusChem, 5, 1474 (2012)
  24. Van Hook JP, Catal. Rev.-Sci. Eng., 21, 1 (1980)
  25. Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1 (1999)
  26. Fan MS, Abdullah AZ, Bhatia S, ChemCatChem, 1, 192 (2009)
  27. Van der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255 (1999)