화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.6, 710-715, December, 2018
자성을 가진 ZnFe2O4@SnO2@TiO2 Core-Shell Nanoparticles의 합성과 특성에 관한 연구
Study on Synthesis and Characterization of Magnetic ZnFe2O4@SnO2@TiO2 Core-shell Nanoparticles
E-mail:
초록
본 연구에서는 자성을 이용하여 재수득이 가능한 광 촉매 물질인 ZnFe2O4@SnO2@TiO2 core-shell nanoparticles (NPs)를 3단계 과정을 통해 합성하였다. 구조적 특성은 X-ray diffraction (XRD) 분석으로 확인하였다. Spinel 구조의 ZnFe2O4와 tetragonal 구조의 SnO2와 anatase 구조의 TiO2가 합성된 것을 확인하였다. 합성한 물질의 자기적 성질은 vibrating sample magnetometer (VSM)으로 확인하였다. Core 물질인 ZnFe2O4의 포화자화 값은 33.084 emu/g으로 확인하였다. SnO2와 TiO2층의 형성의 결과, 두께 증가로 인한 자성은 각각 33, 40% 감소하였으나 재수득이 가능한 충분한 자성을 가지는 것을 확인하였다. 합성된 물질의 광 촉매 효율은 methylene blue (MB)를 사용하여 측정하였다. Core 물질의 효율은 4.2%로 확인하였고 SnO2와 TiO2 shell 형성의 결과 각각 73%와 96%로 증가하였고 높은 광 촉매 효율을 가지는 것을 확인하였다. 또한 항균 특성은 대장균(E. Coli)과 황색포도상구균(S. Aureus)을 사용하여 억제 영역을 확인하였다. Shell 이 형성되면서 더 넓은 억제 영역이 형성되었고 이는 광 촉매 효율을 측정한 결과와 일치하는 것을 확인하였다.
In this study, ZnFe2O4@SnO2@TiO2 core-shell nanoparticles (NPs), a photocatalytic material with magnetic properties, were synthesized through a three-step process. Structural properties were investigated using X-ray diffraction (XRD) analysis. It was confirmed that ZnFe2O4 of the spinel, SnO2 of the tetragonal and TiO2 of the anatase structure were synthesized. The magnetic properties of synthesized materials were studied by a vibrating sample magnetometer (VSM). The saturation magnetization value of ZnFe2O4, a core material, was confirmed at 33.084 emu/g. As a result of the formation of SnO2 and TiO2 layers, the magnetism due to the increase in thickness was reduced by 33% and 40%, respectively, but sufficient magnetic properties were reserved. The photocatalytic efficiency of synthesized materials was measured using methylene blue (MB). The efficiency of the core material was about 4.2%, and as a result of the formation of SnO2 and TiO2 shell, it increased to 73% and 96%, respectively while maintaining a high photocatalytic efficiency. In addition, the antibacterial activity was validated via the inhibition zone by using E. Coli and S. Aureus. The formation of shells resulted in a wider inhibition zone, which is in good agreement with photocatalytic efficiency measurements.
  1. Li Z, Mi LW, Chen WH, Hou HW, Liu CT, Wang HL, Zheng Z, Shen CY, Cryst. Eng. Comm., 14, 3965 (2014)
  2. Hung ST, Chang CJ, Hsu MH, J. Hazard. Mater., 198, 307 (2011)
  3. Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, Neophytides SG, Falaras P, Appl. Catal. B: Environ., 42(2), 187 (2003)
  4. Diamanti MV, Spreafico FC, Pedeferri MP, Phys. Procedia, 40, 30 (2013)
  5. Baek MH, Jung WC, Yoon JW, Hong JS, Lee YS, Suh JK, J. Ind. Eng. Chem., 19(2), 469 (2013)
  6. Lee YC, Yang JW, J. Ind. Eng. Chem., 18(3), 1178 (2012)
  7. Hassan AB, Bazzi R, Cabuil V, Angew. Chem.-Int. Edit., 48, 7180 (2009)
  8. Wilson A, Mishra SR, Gupta R, Ghosh K, J. Magn. Magn. Mater., 324, 2597 (2012)
  9. Chen LY, Xu ZX, Dai H, Zhang ST, J. Alloy. Compd., 497, 221 (2010)
  10. Huang L, Peng F, Wang HJ, Yu H, Li Z, Catal. Commun., 10, 1839 (2009)
  11. Hu J, Xie YH, Zhou XF, Yang JY, J. Alloy. Compd., 676, 320 (2016)
  12. Zhu J, Lu Z, Aruna ST, Aurbach D, Gedanken A, Chem. Mater., 12, 2557 (2000)
  13. Fujishima A, Honda K, Nature, 238, 37 (1972)
  14. Wei TY, Wang YY, Wan CC, J. Photochem. Photobiol. A-Chem., 55, 115 (1990)
  15. Butler EC, Davis AP, J. Photochem. Photobiol. A-Chem., 70, 273 (1993)
  16. Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)
  17. Eguchi K, Koga H, Sekizawa K, Sasaki K, J. Ceram. Soc. Jpn., 108, 1067 (2000)
  18. Kitiyanan A, Yoshikawa S, Mater. Lett., 59, 4038 (2005)
  19. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR, J. Am. Ceram. Soc., 125, 475 (2003)
  20. Jung HS, Lee JK, Nastasi M, Lee SW, Kim JY, Park JS, Hong KS, Shin H, Langmuir, 21(23), 10332 (2005)
  21. Roh SJ, Mane RS, Min S, Lee W, Lokhande CD, Han S, Appl. Phys. Lett., 89(25), 253512 (2006)
  22. Diamant Y, Chen SG, Melamed O, Zaban A, J. Phys. Chem. B, 107(9), 1977 (2003)
  23. Fu WN, Kadhum YH, Mohamad A, Takriff MS, Sopian K, Int. J. Electrochem. Sci., 7, 4871 (2012)
  24. Lv H, Ma L, Zeng P, Ke D, Peng T, J. Mater. Chem., 20, 365 (2010)
  25. Jiang LH, Sun GQ, Zhou ZH, Sun SG, Wang Q, Yan SY, Li HQ, Tian J, Guo JS, Zhou B, Xin Q, J. Phys. Chem. B, 109(18), 8774 (2005)
  26. Yoo JY, Lee YK, Kim JG, J. Korean Chem. Soc., 59, 397 (2015)
  27. Chin S, Park E, Kim M, Jurng J, Powder Technol., 201(2), 171 (2010)
  28. Chekir N, Benhabiles O, Tassalit D, Laoufi NA, Bentahar F, Desalination Water Treat., 57, 1 (2016)
  29. Xu C, Rangaiah GP, Zhao XS, Ind. Eng. Chem. Res., 53(38), 14641 (2014)