화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.70, 211-225, February, 2019
Activated Cu/Cu2O foam with Ni nanoparticles for electrocatalytic activity enhancement of hydrogen evolution reaction (HER) in acidic media
E-mail:
This paper presents the hydrogen evolution reaction of Cu/Cu2O foam by Ni nanoparticles, deposited by electrodeposition and electroless plating. The structure and morphology of Cu/Cu2O foam and deposited Ni nanoparticles were studied by FE-SEM and XRD. The foam with Ni nanoparticles had a high specific surface area measured by BET. The synthesized Cu/Cu2O foam/Ni electrode presented high electrocatalytic activity for HER, with low overpotential of -290 mV vs. Ag/AgCl and Tafel slope of 50 mV decade-1. The stability study of the developed electrodes showed a high stability in short-term.
  1. Chow J, Kopp RJ, Portney PR, Science, 302(5650), 1528 (2003)
  2. Armaroli N, Balzani V, ChemSusChem, 4(1), 21 (2011)
  3. Conway B, Tilak B, Adv. Catal., 38, 1 (1992)
  4. Turner JA, Science, 305(5686), 972 (2004)
  5. Gray HB, Nat. Chem., 1(1), 7 (2009)
  6. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS, Chem. Rev., 110(11), 6446 (2010)
  7. Zeng M, Li Y, J. Mater. Chem. A, 3(29), 14942 (2015)
  8. Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z, Nat. Commun., 6, 6430 (2015)
  9. Cao X, Han Y, Gao C, Xu Y, Huang X, Willander M, Wang N, Nano Energy, 9, 301 (2014)
  10. Sheng WC, Gasteiger HA, Shao-Horn Y, J. Electrochem. Soc., 157(11), B1529 (2010)
  11. Xu YF, Gao MR, Zheng YR, Jiang J, Yu SH, Angew. Chem.-Int. Edit., 52(33), 8546 (2013)
  12. Yan XD, Tian LH, Chen XB, J. Power Sources, 300, 336 (2015)
  13. Zhang P, Wang M, Chen H, Liang Y, Sun J, Sun L, Adv. Energy Mater., 6(8) (2016)
  14. Behzadian B, Piron DL, Fan C, Lessard J, Int. J. Hydrog. Energy, 16(12), 791 (1991)
  15. Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ, J. Am. Chem. Soc., 133(19), 7296 (2011)
  16. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE, J. Am. Chem. Soc., 135(25), 9267 (2013)
  17. Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE, ACS nano, 8(11), 11101 (2014)
  18. Shi Y, Zhang B, Chem. Soc. Rev., 45, 1529 (2016)
  19. Rao DQ, Wang LY, Zhu YS, Guo RK, Li ZL, J. Electrochem. Soc., 163(10), H1026 (2016)
  20. Vidales AG, Omanovic S, Electrochim. Acta, 262, 115 (2018)
  21. He XD, Xu F, Li F, Liu L, Wang Y, Deng N, Zhu YW, He JB, J. Electroanal. Chem., 799, 235 (2017)
  22. Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee WG, Yoon T, Kim KS, ACS Catal., 7, 7196 (2017)
  23. Shen Y, Zhou Y, Wang D, Wu X, Li J, Xi J, Adv. Energy Mater., 8, 170175 (2018)
  24. van Drunen J, Pilapil BK, Makonnen Y, Beauchemin D, Gates BD, Jerkiewicz G, ACS Appl. Mater. Interfaces, 6(15), 12046 (2014)
  25. Lu J, Xiong T, Zhou W, Yang L, Tang Z, Chen S, ACS Appl. Mater. Interfaces., 8(8), 5065 (2016)
  26. Peng Z, Jia D, Al-Enizi AM, Elzatahry AA, Zheng G, Adv. Energy Mater., 5(9) (2015)
  27. Chen PC, Chang YM, Wu PW, Chiu YF, Int. J. Hydrog. Energy, 34(16), 6596 (2009)
  28. Qian X, Hang T, Shanmugam S, Li M, ACS Appl. Mater. Interfaces, 7(29), 15716 (2015)
  29. Herraiz-Cardona I, Ortega E, Vazquez-Gomez L, Perez-Herranz V, Int. J. Hydrog. Energy, 37(3), 2147 (2012)
  30. Yin ZW, Chen FY, J. Power Sources, 265, 273 (2014)
  31. Lu J, Xiong T, Zhou W, Yang L, Tang Z, Chen S, ACS Appl. mater. Interfaces, 8(8), 5065 (2016)
  32. Shen Y, Lua AC, Xi J, Qiu X, ACS Appl. Mater. Interfaces, 8(5), 3464 (2016)
  33. Wan L, Zhang JF, Chen YQ, Zhong C, Hu WB, Deng YD, J. Mater. Sci., 52(2), 804 (2017)
  34. Shin HC, Liu M, Chem. Mater., 16, 5460 (2004)
  35. Shin HC, Dong J, Liu M, Adv. Mater., 15(19), 1610 (2003)
  36. Xu H, Feng JX, Tong YX, Li GR, ACS Catal., 7(2), 986 (2016)
  37. Klingan K, Kottakkat T, Jovanov ZP, Jiang S, Pasquini C, Scholten F, Kubella P, Bergmann A, Cuenya BR, Roth C, Dau H, ChemSusChem., 11, 1 (2018)
  38. Osaka T, Takematsu H, Nihei K, J. Electrochem. Soc., 127(5), 1021 (1980)
  39. Grujicic D, Pesic B, Electrochim. Acta, 47(18), 2901 (2002)
  40. Gunawardena G, Hills G, Montenegro I, Scharifker B, J. Electroanal. Chem. Interfacial Electrochem., 138(2), 225 (1982)
  41. Scharifker B, Hills G, Electrochim. Acta, 28(7), 879 (1983)
  42. Radisic A, Long JG, Hoffmann PM, Searson PC, J. Electrochem. Soc., 148(1), C41 (2001)
  43. Gong M, Wang DY, Chen CC, Hwang BJ, Dai H, Nano Res., 9(1), 28 (2016)
  44. Wu ZJ, Ge SH, Zhang MH, Li W, Tao KY, J. Colloid Interface Sci., 330(2), 359 (2009)
  45. Wang H, Fu Y, Wang X, Gao J, Zhang Y, Zhao Q, J. Alloy. Compd., 639, 352 (2015)
  46. Couper AM, Pletcher D, Walsh FC, Chem. Rev., 90(5), 837 (1990)
  47. Zhang L , Chang Q, Chen H, Shao M, Nano Energy, 29, 198 (2016)
  48. Pentland N, Bockris JM, Sheldon E, J. Electrochem. Soc., 104(3), 182 (1957)
  49. Solmaz R, Koner A, Kardas G, Electrochem. Commun., 10(12), 1909 (2008)
  50. Tilak B, Ramamurthy A, Conway B, J. Chem. Sci., 97(3), 359 (1986)
  51. Bockris JM, Potter E, J. Electrochem. Soc., 99(4), 169 (1952)
  52. Krstajic N, Popovic M, Grgur B, Vojnovic M, Sepa D, J. Electroanal. Chem., 512(1-2), 16 (2001)
  53. Zhang J, Liu F, Cheng JP, Zhang XB, ACS Appl. Mater. interfaces, 7(32), 17630 (2015)
  54. Zhang Z, Liu S, Xiao J, Wang S, J. Mater. Chem. A, 4(24), 9691 (2016)