Korean Chemical Engineering Research, Vol.57, No.1, 65-72, February, 2019
Poly (phenylene oxide, PPO) 고분자 전해질을 이용한 불균질 바이폴라막 제조 및 물분해 특성
Preparation of Heterogeneous Bipolar Membranes Using Poly (phenylene oxide, PPO) Polyelectrolyte and Their Water Splitting Properties
E-mail:
초록
본 연구에서는 PPO 이온선택성 용액과 이온교환수지의 혼합비율을 달리하여 캐스팅법으로 불균질 이온교환막을 제조하였고 이를 이용하여 불균질 바이폴라막을 제조하였다. 불균질 양이온교환막 및 음이온교환막의 함수율은 각각 60~80% 이었고 이온교환용량은 2.81~3.26 meq/g, 2.31~2.74 meq/g 이었으며 전기저항은 1.65~1.45Ω·cm2, 1.55~1.05 Ω·cm2 이었다. 또한 불균질 이온교환막의 최대 수지함량은 60 wt% 이었다. 불균질 바이폴라막의 인장강도는 관능화 전 PPO 수지의 인장강도(700 Kgf/cm2) 보다 모두 낮았고, 촉매층이 형성된 불균질 바이폴라막의 인장강도는 무촉매 불균질 바이폴라막보다 인장강도가 낮았다. 또한 촉매층이 형성된 불균질 바이폴라막의 물분해 전압은 최소 1.7~1.8 V, 최대 3.9~4.0 V로 낮고 매우 안정적이었고, 무촉매 불균질 바이폴라막의 물분해 전압은 3.8~4.0 V로 일정하였다.
In this study, heterogeneous ion exchange membranes were prepared by casting method with various mixing ratios of PPO ion-selective solution and ion exchange resin. Then heterogeneous bipolar membranes were prepared by using this. The water content of heterogeneous cation and anion exchange membranes were 60~80% respectively, the ion exchange capacity was 2.81~3.26 meq/g, 2.31~2.74 meq/g and electrical resistances were 1.65~1.45 Ω·cm2 and 1.55 ~1.05 Ω·cm2. The tensile strength of heterogeneous bipolar membrane was lower than that of PPO resin before functionalization (700 Kgf/cm2). The tensile strength of heterogeneous bipolar membrane with catalyst layer was lower than that of non-catalytic heterogeneous bipolar membrane. The water splitting voltage of the heterogeneous bipolar membrane with catalyst layer was low and stable at a minimum of 1.7~1.8 V, maximum 3.9~4.0 V, and the water splitting voltage of the non-catalytic heterogeneous bipolar membrane was constant at 3.8~4.0 V.
Keywords:Heterogeneous cation exchange membrane;Heterogeneous anion exchange membrane;Heterogeneous bipolar membrane;PPO;Ion exchanger resin
- Hosseini SM, Madaeni SS, Heidari AR, Amirimehr A, Desalination, 284, 191 (2012)
- Nagarale RK, Gohil GS, Shahi VK, Rangarajan R, Colloids Surf. A: Physicochem. Eng. Asp., 251, 133 (2004)
- Lee CS, Shin HS, Jun JH, Jung SY, Rhim JH, Membr. J., 12, 1 (2002)
- Zhong PS, Widjojo N, Chung TS, Weber M, Maletzko C, J. Membr. Sci., 417, 52 (2012)
- Al-Rashdi BAM, Johnson DJ, Hilal N, Desalination, 315, 2 (2013)
- Cho CH, Oh KY, Kim SK, Yeo JG, Sharma P, J. Membr. Sci., 371(1-2), 226 (2011)
- Strathmann H, Desalination, 264(3), 268 (2010)
- Kim KS, Kim SH, Jung IH, J. Korean Ind. Eng. Chem., 12(5), 560 (2001)
- Sung YT, Kum CK, Lee HS, Kim JS, Yoon HG, Kim WN, Polymer, 46(25), 11844 (2005)
- Zendehnam A, Mokhtari S, Hosseini SM, Rabieyan M, Desalination, 347, 86 (2014)
- Yoshida N, Ishisaki T, Watakabe A, Yoshitake M, Electrochim. Acta, 43(24), 3749 (1998)
- Kwak NS, Koo JS, Hwang TS, Choi EM, Desalination, 285, 138 (2012)
- Strathmann H, “Ion-exchange Membrane Processes in Water Treatment (Chapter6), Sustainability Science and Engineering, Elsevier:Amsterdam, 141-119, 2010.
- Ko DY, Kim IS, Hwang TS, Membr. J., 26(2), 97 (2016)
- Jeong MH, Ko DY, Hwang TS, Membr. J., 25(5), 431 (2015)
- Kumar P, Dutta K, Das S, Kundu PP, Appl. Energy, 123, 66 (2014)
- Park CO, Rhim JW, Membr. J., 27(1), 84 (2017)