화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.1, 133-141, February, 2019
고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향
Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH
E-mail:
초록
침전법으로 환류방법 또는 수열합성법을 이용하여 산·염기점을 갖는 고비표면적 지르코니아를 합성하였다. 제조된 지르코니아는 침전제로 수산화암모늄 수용액을 사용하여 Zr 용액의 pH를 2에서 10 범위 내에서 조절하였으며 질소흡 착분석, X-선 회절분석(XRD), 이소프로판올 승온탈착법(IPA-TPD), 주사전자현미경 분석, X-선 광전자분광분석, 산-염기점 분석을 통해 IPA 분해반응의 촉매활성과 연관하여 특성분석을 수행하였다. 환류방법을 사용할 시, tetragonal 상이 높은 지르코니아를 얻기 위해서는 Zr 용액의 pH가 높아야 하며, pH 9 이상에서는 순수한 tetragonal 상의 지르코니아 합성이 가능하였다. 또한, 비표면적이 큰 지르코니아를 얻기 위해서는 높은 pH가 요구되었으며, pH 10에서 합성한 경우에는 600 °C 에서 소성 후에도 260 m2 g-1의 높은 비표면적이 얻어졌다. 하지만 같은 조건 하에서 고압이 수반되는 수열합성에는 40 m2 g-1 이하의 매우 낮은 비표면적을 보였으며, monoclinic 상의 지르코니아가 합성되었다. 고 비표면적 tetragonal 상의 지르코니아를 얻기 위해서는 용액의 pH가 가장 큰 영향을 미쳤으며, 용액의 pH와 무관하게 높은 압력이 필요한 수열합성에서는 monoclinic 지르코니아가 생성되었으며 상대적으로 비표면적이 낮게 나타났다. 높은 비표면적과 tetragonal 상을 갖는 지르코니아는 염기점에 비해 산점이 우세하여 IPA 분해반응에서 선택적 탈수반응만 진행되는 프로필렌만 생성되었다.
High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of 260 m2 g-1 even after calcination at 600 °C. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below 40 m2 g-1 and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.
  1. Miura N, Sato T, Anggraini SA, Ikeda H, Zhuiykov S, Ionics, 20, 901 (2014)
  2. Kouva S, Honkala K, Lefferts L, Kanervo J, Catal. Sci. Technol., 5, 3473 (2015)
  3. Yamaguchi T, Catal. Today, 20, 199 (1994)
  4. Kisi EH, Howard C, Key Eng. Mater., 153-154, 1 (1998)
  5. Guisnet MR, Accounts Chem. Res., 23, 392 (1990)
  6. Aramendia MA, Borau V, Jimenez C, Marinas JM, Marinas A, Porras A, Urbano FJ, J. Catal., 183(2), 240 (1999)
  7. Kijenski J, Baiker A, Catal. Today, 5, 1 (1989)
  8. Li YW, He DH, Zhu QM, Zhang X, Xu BQ, J. Catal., 221(2), 584 (2004)
  9. Zhang HX, Ng CF, Lai SY, Appl. Catal. B: Environ., 55(4), 301 (2005)
  10. Hong E, Kim C, Lim DH, Cho HJ, Shin CH, Appl. Catal. B: Environ., 232, 544 (2018)
  11. Park JH, Cho JH, Kim YJ, Kim ES, Han HS, Shin CH, Appl. Catal. B: Environ., 160, 135 (2014)
  12. ecchi G, Reyes P, Gomez R, Lopez T, Fierro J, Appl. Catal. B: Environ., 17, L7 (1998)
  13. Guerrero S, Araya P, Wolf EE, Appl. Catal. A: Gen., 298, 243 (2006)
  14. Yue YH, Zhao XP, Hua WM, Gao Z, Appl. Catal. B: Environ., 46(3), 561 (2003)
  15. Afanasiev P, Thiollier A, Breysse M, Dubois J, Top. Catal., 8, 147 (1990)
  16. Chuah GK, Jaenicke S, Pong BK, J. Catal., 175(1), 80 (1998)
  17. Chuah GK, Jaenicke S, Appl. Catal. A: Gen., 163(1-2), 261 (1997)
  18. Stocker C, Baiker A, J. Non-Cryst. Solids, 223, 165 (1998)
  19. Ren TZ, Yuan ZY, Su BL, Chem. Phys. Lett., 388(1-3), 46 (2004)
  20. Sim HI, Park JH, Cho JH, Ahn JH, Choi MS, Shin CH, Korean Chem. Eng. Res., 51(2), 208 (2013)
  21. Stichert W, Schuth F, Chem. Mater., 10, 2020 (1998)
  22. Hong EP, Baek SW, Shin M, Suh YW, Shin CH, J. Ind. Eng. Chem., 54, 137 (2017)
  23. Liu S, Wu XD, Tang J, Cui PY, Jiang XQ, Chang CG, Liu W, Gao YX, Li M, Weng D, Catal. Today, 281, 454 (2017)
  24. Shuang L, Xiaodong W, Duan W, Rui R, J. Rare Earths, 33, 567 (2015)
  25. Fino D, Bensaid S, Piumetti M, Russo N, Appl. Catal. A: Gen., 509, 75 (2016)
  26. Asadikiya M, Zhong Y, J. Mater. Sci., 53(3), 1699 (2018)
  27. Duwez P, Odell F, Brown FH, J. Am. Ceram. Soc., 35, 107 (1952)
  28. Liu A, Nyavor K, Li Z, Egiebor NO, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 366, 66 (2004)
  29. Ma H, Kong Y, Hou W, Yan Q, Microporous Mesoporous Mater., 7, 241 (2005)
  30. Li P, Chen IW, Penner-Hahn JE, J. Am. Ceram. Soc., 77, 118 (1994)
  31. Li P, Chen IW, Penner-Hahn JE, J. Am. Ceram. Soc., 77, 1281 (1994)
  32. del Monte F, Larsen W, Mackenzie JD, J. Am. Ceram. Soc., 83(3), 628 (2000)
  33. Pyen S, Hong E, Shin M, Suh YW, Shin CH, Mol. Catal., 448, 71 (2018)
  34. Jung KT, Bell AT, J. Mol. Catal. A-Chem., 163(1-2), 27 (2000)
  35. Kim TW, Park S, Oh J, Shin CH, Suh YW, ChemCatChem, 10, 3406 (2018)