화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.1, 16-22, January, 2019
기수지역 선박평형수의 염소 생성 효율에 미치는 전기화학 처리의 영향
Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone
E-mail:
Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), Ti/RuO2, and Ti/IrO2 electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.
  1. Chiang LC, Chang JE, Wen TC, Water Res., 29, 671 (1995)
  2. Martinez-Huitle CA, Ferroa S, Chem. Soc. Rev., 35, 1324 (2006)
  3. Chen S, Hu W, Hong J, Sandoe S, Mar. Pollut. Bull., 105, 319 (2016)
  4. Lacasa E, Tsolaki E, Sbokou Z, Rodrigo MA, Mantzavinos D, Diamadopoulos E, Chem. Eng. J., 223, 516 (2013)
  5. Choi YS, Lee YK, Kim JY, Lee YK, Korean J. Mater. Res., 28(5), 301 (2018)
  6. Benzhour K, Szatkowski J, Rozpłoch F, Stec K, Acta Phys. Pol. A, 118, 447 (2010)
  7. Tallaire A, Rond C, Benedic F, Brinza O, Achard J, Silva F, Gicquel A, Phys. Status Solidi A-Appl. Res., 208, 2028 (2011)
  8. Zhou D, Gruen DM, Qin LC, McCauley YG, Krauss AR, J. Appl. Phys., 84, 1981 (1998)
  9. Gracio JJ, Fan QH, Madaleno JC, J. Phys. D-Appl. Phys., 43, 374017 (2010)
  10. Lin L, Wang J, Weng J, Cui X, Zhang Y, Plasma Sci. Tech., 17, 216 (2015)
  11. Zhang Y, Zhang F, Gao QJ, Yu DP, Peng XF, Lin ZD, Chin. Phys. Lett., 18, 286 (2001)
  12. Hernlem BJ, Tsai LS, J. Food Sci., 65, 834 (2000)
  13. Rajab M, Heim C, Letzel T, Drewes JE, Helmreich B, Chemosphere, 121, 47 (2015)
  14. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J, Phys. Chem. Chem. Phys., 12, 283 (2009)
  15. Chen GH, Sep. Purif. Technol., 38(1), 11 (2004)
  16. Miled W, Haj Said A, Roudesli S, J. Text. Apparel Technol. Manage., 6, 89 (2010)
  17. Balaji R, Kannan BS, Lakshmi J, Senthil N, Vasudevan S, Sozhan G, Shukla AK, Ravichandran S, Electrochem. Commun., 11, 1700 (2009)
  18. Lee HS, Kim SK, Seok HW, Kim JH, Choi HJ, Jung HI, Korean J. Mater. Res., 22(2), 86 (2012)
  19. Luu TL, Kim J, Yoon J, J. Ind. Eng. Chem., 21, 400 (2015)
  20. Trieu V, Schley B, Natter H, Kintrup J, Bulan A, Hempelmann R, Electrochim. Acta, 78, 188 (2012)