화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.1, 23-28, February, 2019
마이크로웨이브 활성화 3차원 다공성 그래핀/탄소실 기반의 고성능 플렉서블 슈퍼커패시터 케이블
High-performance of Flexible Supercapacitor Cable Based on Microwave-activated 3D Porous Graphene/Carbon Thread
E-mail:
초록
탄소 실의 표면에 코팅 된 3차원 다공성 그래핀으로 구성된 슈퍼커패시터 케이블 소자를 보고하고자 한다. 그래핀의 3D 다공성 구조는 그래핀옥사이드로 코팅된 탄소 실을 사용하여 마이크로웨이브 활성화 방법에 의해 제작하였다. 마이크로파 조사의 사용은 환원제 없이 그래핀옥사이드를 환원된 그래핀옥사이드로 전환시키고 그래핀 시트를 박리 및 다공성 그래핀 시트로 활성화시켰다. 두 개의 와이어 전극을 고분자 겔 전해질과 결합하여 성공적으로 케이블 구조 형태의 슈퍼커패시터 소자를 제작하였다. 슈퍼커패시터 케이블은 매우 유연하기 때문에 다양한 형태의 장치로 변형될 수 있고 섬유 품목으로 통합될 수 있다. 주사 속도 10 mV/s에서 38.1 mF/cm의 높은 정전용량이 얻어졌다. 이용량은 500 mV/s에서 원래 값의 88%를 유지하였다. 장수명특성은 구부러진 형태에서도 10,000회 동안 충전/방전 과정을 반복함으로써 96.5%의 높은 정전용량 유지율을 증명하였다.
We report a supercapacitor cable, which consists of three-dimensional (3D) porous graphene coated onto the surface of carbon thread. The 3D porous framework of graphene was constructed by microwave-activated process using a graphene oxide-coated carbon thread. The use of microwave irradiation enabled to convert graphene oxide into reduced graphene oxide without any reducing agents and activate graphene sheets into exfoliated and porous graphene sheets. Combining two wire electrodes with a polymer gel electrolyte successfully completed supercapacitor device in a form of cable construction. The supercapacitor cables were highly flexible, and thus can be transformed into various shapes of devices and be integrated into textile items. A high area-capacitance of 38.1 mF/cm was obtained at a scan rate of 10 mV/s. This capacitance was retained 88% of its original value at 500 mV/s. The cycle life was also demonstrated by repeating a charge/discharge process during 10,000 cycles even under bent states, showing a high capacitance retention of 96.5%.
  1. Lu X, Yu M, Wang G, Tong Y, Li Y, Energy Environ. Sci., 7, 2160 (2014)
  2. Kim DH, Ahn JH,.Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA, Science, 320, 507 (2008)
  3. Bariya M, Nyein HYY, Javey A, Nat. Electron., 1, 160 (2018)
  4. Zhang Z, Li H, Miller R, Malissa H, Jamali S, Boehme C, Grossman JC, Ren S, Nano Lett., 18, 4346 (2018)
  5. Zhang D, Miao M, Niu H, Wei Z, ACS Nano, 8, 4571 (2014)
  6. Yu Z, Tetard L, Zhai L, Thomas J, Energy Environ. Sci., 8, 702 (2015)
  7. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J, Chem. Soc. Rev., 44, 7484 (2015)
  8. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X, Energy Environ. Sci., 7, 3857 (2014)
  9. Beidaghi M, Gogotsi Y, Energy Environ. Sci., 7, 867 (2014)
  10. Zheng Y, Yang Y, Chen S, Yuan Q, CrystEngComm, 18, 4218 (2016)
  11. Sumboja A, Liu J, Zheng WG, Zong Y, Zhang H, Liu Z, Chem. Soc. Rev., 47, 5919 (2018)
  12. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee JH, Kim SW, Lee YH, ACS Nano, 7, 5940 (2013)
  13. Yang Y, Zhang N, Zhang B, Zhang Y, Tao C, Wang J, Fan X, ACS Appl. Mater. Interfaces, 9, 40207 (2017)
  14. Liu NS, Ma WZ, Tao JY, Zhang XH, Su J, Li LY, Yang CX, Gao YH, Golberg D, Bando Y, Adv. Mater., 25(35), 4925 (2013)
  15. Huang M, Wang L, Chen S, Kang L, Lei Z, Shi F, Xu H, Liu ZH, RSC Adv., 7, 10092 (2017)
  16. Purkait T, Singh G, Kumar D, Singh M, Dey RS, Sci. Rep., 8, 640 (2018)
  17. Yu Z, Moore J, Calderon J, Zhai L, Thomas J, Small, 39, 5289 (2015)
  18. Ji Q, Zhao X, Liu H, Guo L, Qu J, ACS Appl. Mater. Interfaces, 6, 9496 (2014)
  19. Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G, Nano Lett., 13, 2151 (2013)
  20. Jin Y, Chen H, Chen M, Liu N, Li Q, ACS Appl. Mater. Interfaces, 5, 3408 (2013)
  21. Yang M, Lee KG, Lee SJ, Lee SB, Han YK, Choi BG, ACS Appl. Mater. Interfaces, 7, 22364 (2015)
  22. Manjakkal L, Nunez CG, Dang W, Dahiya D, Nano Energy, 51, 604 (2018)
  23. Yang M, Jeong JM, Huh YS, Choi BG, Compos. Sci. Technol., 121, 123 (2015)