화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.1, 34-38, February, 2019
탄산화 공정 적용을 위한 시멘트 산업부산물 내 양이온 추출 및 분리 연구
A Study on the Cation Extraction and Separation in Cement Industrial By-products for Applications to the Carbonation Process
E-mail:
초록
탄산화 공정을 위한 Ca 추출원으로 시멘트 산업부산물을 사용하였다. ICP와 XRD 분석을 통하여 시멘트 산업부산물은 대부분 CaO와 KCl로 구성되어 있음을 확인하였다. 최적화된 추출용제의 종류 및 농도는 1.5 M of hydrochloric acid 이며 최적의 고액비는 0.1 g/mL이었다. 추출 성능 실험 결과를 통해 양이온의 추출효율은 이온 결합 형태 및 용해도에 의존함으로 판단되었다. 또한 추출 공정 후, 첨가물의 종류 및 주입 순서에 따라 선택적으로 양이온이 분리될 수 있음을 확인하였다. pH를 9.5, 13으로 조절하기 위하여 NaOH를 주입하였을 때 불순물과 Ca(OH)2가 침전되었으며, C2H5OH를 주입한 경우 KCl 형태로 분리된 K가 침전되었다.
A cement industrial by-product was used as a Ca source for the carbonation process. It was confirmed that the most of cement industrial by-products was composed of CaO and KCl through ICP and XRD analyses. The optimal extractant type and concentration was 1.5 M of hydrochloric acid, and the solid/liquid ratio was 0.1 g/mL. It was assumed that the cation extraction efficiency was dependent of the pair ions and their binding formation and also the solubility from extraction efficiency results by varing extractants. After extraction process, it was also confirmed that the cation could be selectively separated from the solution with respect to the kind of additives and the injection order. When NaOH was injected into the solution to control pH values ranging from 9.5 and 13, impurities and Ca(OH)2 were precipitated, whereas the separated K ion was precipitated in the form of KCl under the injected C2H5OH.
  1. Chae SC, Jang YN, Ryu KW, J. Geol. Soc. Korea, 45, 527 (2009)
  2. Korea Meteorological Administration, Climate Change Information Center, Report of Global Atmosphere Watch 2013, 278 (2014).
  3. Metz B, Davidson O, de Coninck H, Loos M, Meyer L, IPCC Special Report on Carbon Dioxide Capture and Storage, United Kingdom (2005).
  4. Aresta M, Carbon Dioxide Recovery and Utilization, p. 21-49, Springer, Berlin/Heidelberg, Germany (2013).
  5. Son M, Kim G, Han K, Lee MW, Lim JT, Korean Chem. Eng. Res., 55(2), 141 (2017)
  6. Kim HS, Chae SC, Ahn JW, Jang YN, Miner. Sci. Ind., 22, 71 (2009)
  7. Inagendo, Carbon Capture Use & Storage (CCUS), http://www.inagendo.com/res/default/inagendo_ccus.pdf (2013).
  8. Eloneva S, Teir S, Salminen J, Fogelholm CJ, Zevenhoven R, Energy, 33(9), 1461 (2008)
  9. Mun MW, Cho HC, Energy Procedia, 37, 6999 (2013)
  10. Lee SM, Lee SH, Jeong SK, Youn MH, Nguyen DD, Chang SW, Kim SS, J. Ind. Eng. Chem., 53, 233 (2017)
  11. Bonenfant D, Kharoune L, Sauve S, Hausler R, Niquette P, Mimeault M, Kharoune M, Ind. Eng. Chem. Res., 47(20), 7610 (2008)
  12. Santos RM, Bouwel JV, Vandevelde E, Mertens G, Elsen J, Gerven TV, Int. J. Greenhouse Gas Control, 17, 32 (2013)
  13. Jo H, Park SH, Jang YN, Chae SC, Lee PK, Jo HY, Chem. Eng. J., 254, 313 (2014)
  14. Montes-Hernandez G, Perez-Lopez R, Renard F, Nieto JM, Charlet L, J. Hazard. Mater., 161(2-3), 1347 (2009)
  15. Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC, J. Hazard. Mater., 168(1), 31 (2009)
  16. Lee YH, Lee SH, Hwang IH, Choi SY, Lee SM, Kim SS, Appl. Chem. Eng., 29(1), 43 (2018)
  17. Eloneva S, Teir S, Revitzer H, Salminen J, Said A, Fogelholm C, Zevenhoven R, Steel Res. Int., 80, 415 (2009)
  18. Hu J, Liu W, Wang L, Liu Q, Chen F, Yue H, Liang B, Lu L, Wang Y, Zhang G, Li C, J. Energy Chem., 26, 927 (2017)