Applied Chemistry for Engineering, Vol.30, No.1, 62-67, February, 2019
2 kW급 고체산화물연료전지의 고온배기가스 폐열회수를 위한 일체형 Hot BoP의 설계 및 성능 평가
Design and Performance Evaluation of Integral-type Hot BoP for Recovering High-temperature Exhaust Gas in 2 kW Class SOFC
E-mail:
초록
본 연구에서는 2 kW급 SOFC (solid oxide fuel cell)에서 배출되는 고온 배기가스의 폐열회수를 위한 일체형 Hot BoP의 설계와 성능 분석에 대한 연구를 수행하였다. Hot BoP 시스템은 스택 배기가스의 연소를 위한 촉매 연소기와 연소 후 배기 가스의 폐열회수를 위한 원통다관형 공기예열기 및 스팀발생기로 구성되었다. 시스템 설계에서 폐열회수 시스템의 배치에 따른 최대 허용열용량을 산출하여 열분배 공정을 분석하였으며, 열전달 방정식을 통하여 공기예열기 및 스팀발생기의 상세설계를 수행하였다. Hot BoP는 방열손실의 저감을 위해 일체형으로 제작되었으며, SOFC와 연계운전을 가정한 스택배기가스를 모사하여 성능실험에 사용하였다. Hot BoP 성능실험에서 부하별 열전달량 및 시스템 효율이 측정 및 분석되었으며, 당량비에 따른 배기가스의 CO 발생량을 측정하여 연소성을 분석하였다. 실험결과로써, 2 kW급 SOFC 정격운전시 배기가스 연소열부하 기준으로 hot BoP의 열적 효율은 약 60%이며, 연소 후 배기가스의 CO 발생량은 당량비 0.25 이상에서 급격히 감소되는 것으로 나타났다.
This study was focused on the design and the performance analysis of integral Hot BoP for recovering waste heat from high-temperature exhaust gas in 2 kW class solid oxide fuel cell (SOFC). The hot BoP system was consisted of a catalytic combustor, air preheater and steam generator for burning the stack exhaust gas and for recovering waste heat. In the design of the system, the maximum possible heat transfer was calculated to analyze the heat distribution processes. The detail design of the air preheater and steam generator was carried out by solving the heat transfer equation. The hot BoP was fabricated as a single unit to reduce the heat loss. The simulated stack exhaust gas which considered SOFC operation was used to the performance test. In the hot BoP performance test, the heat transfer rate and system efficiency were measured under various heat loads. The combustibility with the equivalent ratio was analyzed by measuring CO emission of the exhaust gas. As a result, the thermal efficiency of the hot BoP was about 60% based on the standard heat load of 2 kW SOFC. CO emission of the exhaust gas rapidly decreased at an equivalent ratio of 0.25 or more.
- Jensen SH, Graves C, Mogensen M, Wendel C, Braun R, Hughes G, Gao Z, Barnett SA, J. Energy Environ. Sci., 8, 2471 (2015)
- Lee K, Kim J, J. Korean Ind. Eng. Chem., 28(1), 118 (2017)
- Kim KS, Kim MK, Noh DK, Tak Y, Baeck SH, J. Korean Ind. Eng. Chem., 22(5), 479 (2011)
- Ellamla HR, Staffell I, Bujlo P, Pollet BG, Pasupathi S, J. Power Sources, 293, 312 (2015)
- Kim TH, Ryu BH, Lee IJ, Appl. Chem. Eng., 21(4), 401 (2010)
- Rim HR, Jeong SK, Lee JS, J. Korean Ind. Eng. Chem., 7(6), 1125 (1996)
- Wongchanapai S, Iwai H, Saito M, Yoshida H, J. Power Sources, 204, 14 (2012)
- Yu S, Hong D, Lee Y, Lee S, Ahn K, Renew. Energy, 35(5), 1083 (2010)
- Wongchanapai S, Iwai H, Saito M, Yoshida H, J. Power Sources, 216, 314 (2012)
- Yoshida H, Iwai H, proceedings of fifth international conference on enhanced, compact and ultra-compact heat exchangers: science, Engineering and Technology, Semtember 11-16, Hoboken, NJ, USA (2005).
- Payne R, Love J, Kah M, J. Electrochem. Soc., 25(2), 231 (2009)
- Yen TH, Hong WT, Huang WP, Tsai YC, Wang HY, Huang CN, Lee CH, J. Power Sources, 195(5), 1454 (2010)
- Ghang TG, Lee SM, Ahn KY, Kim Y, Int. J. Hydrog. Energy, 37(4), 3234 (2012)
- Lee SM, Lee YD, Ahn KY, Hong DJ, Kim MY, Trans. Korean Hydrogen New Energy Soc., 18(4), 406 (2007)
- Lee SM, Lee Y, Ahn KY, Yu SS, Trans. Korean Hydrogen New Energy Soc., 21(3), 193 (2010)
- Lee Y, Yang C, Yang C, Park S, Park S, Trans. Korean Hydrogen New Energy Soc., 27(1), 49 (2016)
- Lee TH, Choi JH, Park TS, Yoo YS, Nam SW, Trans. Korean Hydrogen New Energy Soc., 20(5), 384 (2009)
- Lee TH, Trans. Korean Hydrogen New Energy Soc., 21(5), 405 (2010)
- Janssens JP, Dubuisson M, Vos YD, Proceedings of 13th European SOFC & SOE Forum, July 3-6, Lucerne, Switzerland (2018).