화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 318-326, March, 2019
Laser desorption/ionization mass spectrometry-based compositional analysis of Au.Ag nanoplates synthesized by galvanic replacement and their application for small molecule analysis
E-mail:,
This paper demonstrates that laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF- MS) can be utilized to analyze the relative atomic composition and photothermal conversion properties of Au.Ag alloy nanoplates synthesized by galvanic replacement reactions. Using Au.Ag alloy nanoplates with various shapes, it is found that the porous structures of the nanoplates affect their photothermal conversion efficiency more than their laser energy absorption capacity does. Based on these findings, the optimized Au.Ag alloy nanoplates can be applied to LDI-TOF-MS of small molecules.
  1. Karas M, Hillenkamp F, Anal. Chem., 60, 2299 (1988)
  2. Abdelhamid HN, Trends Anal. Chem., 89, 68 (2017)
  3. Peterson DS, Mass Spectrom. Rev., 26, 19 (2007)
  4. Kim YK, Min DH, ACS Appl. Mater. Interfaces, 4, 2088 (2012)
  5. Abdelhamid HN, Chen ZY, Wu HF, Anal. Bioanal. Chem., 409, 4943 (2017)
  6. Abdelhamid HN, Lin YC, Wu HF, RSC Adv., 7, 41585 (2017)
  7. Abdelhamid HN, Lin YC, Wu HF, Microchim. Acta, 184, 184 (2017)
  8. McLean JA, Stumpo KA, Russell DH, J. Am. Chem. Soc., 127(15), 5304 (2005)
  9. Sekuła J, Nizioł J, Rode W, Ruman T, Analyst, 140, 6195 (2015)
  10. Abdelhamid HN, Microchim. Acta, 185, 200 (2018)
  11. Kailasa SK, Wu HF, Analyst, 137, 1629 (2012)
  12. Kailasa SK, Kiran K, Wu HF, Anal. Chem., 80, 9681 (2008)
  13. Kailasa SK, Wu HF, Analyst, 135, 1115 (2010)
  14. Kailasa SK, Wu HF, Trends Anal. Chem., 65, 54 (2015)
  15. Yoshimura K, Przybilla L, Ito S, Brand JD, Wehmeir M, Rader HJ, Mullen K, Macromol. Chem. Phys., 202, 215 (2001)
  16. Tang HW, Ng KM, Lu W, Che CM, Anal. Chem., 81, 4720 (2009)
  17. Kim YM, Min DH, Chem. Eur. J., 21, 7217 (2015)
  18. Lee JS, Kim YK, Hwang JY, Joh HI, Park CR, Lee S, Carbon, 121, 479 (2017)
  19. Yan B, Jeong Y, Mercante LA, Tonga GY, Kim C, Zhu ZJ, Vachet RW, Rotello VM, Nanoscale, 5, 5063 (2013)
  20. Sun Y, Mayers BY, Xia Y, Nano Lett., 2, 481 (2002)
  21. Jang H, Kim YK, Min DH, Chem. Commun., 53, 1385 (2017)
  22. Jang H, Min DH, ACS Nano, 9, 2696 (2015)
  23. Xia XH, Wang Y, Ruditskiy A, Xia YN, Adv. Mater., 25(44), 6313 (2013)
  24. Lee J, Lee J, Chung TD, Yeo WS, Anal. Chim. Acta, 736, 1 (2012)
  25. Huang L, Wan J, Wei X, Liu Y, Huang J, Sun X, Zhang R, Gurav DD, Vedarethinam V, Li Y, Chen R, Qian K, Nat. Commun., 8, 220 (2017)
  26. Sun X, Huang L, Zhang R, Xu W, Huang J, Gurav DD, Vedarethinam V, Chen R, Lou J, Wang Q, Wan J, Qian, ACS Cent. Sci., 4, 223 (2018)
  27. Kang S, Kang K, Huh H, Kim H, Chang SJ, Park TJ, Chang KS, Min DH, Jang H, ACS Appl. Mater. Interfaces, 9, 35268 (2017)
  28. Kang S, Shin W, Kang K, Choi MH, Kim YJ, Kim YK, Min DH, Jang H, ACS Appl. Mater. Interfaces, 10, 13819 (2018)
  29. Chiang CK, Chen WT, Chang HT, Chem. Soc. Rev., 40, 1269 (2011)
  30. Kim YK, Na HK, Kwack SJ, Ryoo SR, Lee Y, Hong S, Hong S, Jeong Y, Min DH, ACS Nano, 5, 4550 (2011)