Journal of Industrial and Engineering Chemistry, Vol.71, 445-451, March, 2019
Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder
E-mail:
Garnet-related Li6.25Al0.25La3Zr2O12 (Al-LLZO) powder was prepared by calcination the precursor synthesized a Couette.Taylor reactor. The powder comprised regular blocks (1-2 mm) and consisted of fine particles (average particle size: D50 = 600 nm, specific surface area: 2.42 m2 g-1) that adopted a highly crystalline nanoscale cubic structure (lattice parameter: a = 13.07769 Å; crystallite size: 41.4 nm). A composite electrolyte (CE) sheet in which the Al-LLZO nanopowder was finely dispersed was prepared by casting a slurry comprising 70 wt% Al-LLZO, polyethylene oxide (PEO), and lithium salt (LiClO4). The total ionic conductivity of the CE sheet was 7.59 x 10-6 S cm-1 at 25 °C and 1.93 x 10-3 S cm-1 at 70 °C, compared with 3.03 x 10-4 S cm-1 at 25 °C for the Al-LLZO pellet. Cyclic voltammetry showed that the electrochemical potential of the CE sheet was superior to that of PEO sheet. For application of the CE in all-solid lithium batteries (ASLBs), a composite NCM-based cathode composed of Al LLZO, PEO, Super-P, and VGCF was also prepared. The discharge capacity of the cell was ~122 mAh g-1 at 0.1C & 70 °C in voltages of 3.0-4.1 V, and 80% of the initial capacity was maintained over 100 cycles with high rate characteristics.
Keywords:Garnet-type nanopowder;Cubic structure;Ionic conductivity;Composite electrolyte sheet;All-solid lithium batteries
- Schnell J, Gunther T, Knoche T, Vieider C, Kohler L, Just A, Keller M, Passerini S, Reinhart G, J. Power Sources, 382, 160 (2018)
- Kerman K, Luntz A, Viswanathan V, Chiang YM, Chen ZB, J. Electrochem. Soc., 164(7), A1731 (2017)
- Liu Q, Geng Z, Han CP, Fu YZ, Li S, He YB, Kang FY, Li BH, J. Power Sources, 389, 120 (2018)
- Ohtomo T, Hayashi A, Tatsumisago M, Tsuchida Y, Hama S, Kawamoto K, J. Power Sources, 233, 231 (2013)
- Ohta S, Kobayashi T, Seki J, Asaoka T, J. Power Sources, 202, 332 (2012)
- Jung YC, Kim SK, Kim MS, Lee JH, Han MS, Kim DH, Shin WC, Ue M, Kim DW, J. Power Sources, 293, 675 (2015)
- Ito S, Fujiki S, Yamada T, Aihara Y, Park Y, Kim TY, Baek SW, Lee JM, Doo S, Machida N, J. Power Sources, 248, 943 (2014)
- Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T, J. Power Sources, 238, 53 (2013)
- Nam YJ, Cho SJ, Oh DY, Lim JM, Kim SY, Song JH, Lee YG, Lee SY, Jung YS, Nano Lett., 15, 3317 (2015)
- Jin Y, McGinn P, J. Power Sources, 196(20), 8683 (2011)
- El-Shinawi H, Paterson GW, MacLaren DA, Cussen EJ, Corr SA, J. Mater. Chem., 5, 319 (2017)
- Li YQ, Wang Z, Li CL, Cao Y, Guo XX, J. Power Sources, 248, 642 (2014)
- Kim S, Hirayama M, Taminato S, Kanno R, Dalton Trans., 42, 13112 (2013)
- Ahn CW, Choi JJ, Ryu J, Hahn BD, Kim JW, Yoon WH, Choi JH, Park DS, J. Electrochem. Soc., 162, A60 (2014)
- Thangadurai V, Pinzaru D, Narayanan S, Baral AK, J. Phys. Chem. Lett., 6, 292 (2015)
- Choi JH, Lee CH, Yu JH, Doh CH, Lee SM, J. Power Sources, 274, 458 (2015)
- Chan CK, Yang T, Weller JM, Electrochim. Acta, 253, 268 (2017)
- Wolfenstine J, Rangasamy E, Allen JL, Sakamoto J, J. Power Sources, 208, 193 (2012)
- Ohta S, Seki J, Yagi Y, Kihira Y, Tani T, Asaoka T, J. Power Sources, 265, 40 (2014)
- Kokal I, Ramanujachary KV, Notten PHL, Hintzen HT, Mater. Res. Bull., 47(8), 1932 (2012)
- Thai DK, Mayra QP, Kim WS, Powder Technol., 274, 5 (2015)
- Yang T, Zheng J, Cheng Q, Hu YY, Ch CK, ACS Appl. Mater. Interfaces, 9, 21773 (2017)
- Zhang D, Zhang L, Yang K, Wang H, Yu C, Xu D, Xu B, Wang LM, ACS Appl. Mater. Interfaces, 9, 36886 (2017)
- Zhang W, Nie J, Li F, Wang ZL, Sun C, Nano Energy, 45, 413 (2018)
- Huo HY, Sun JY, Chen C, Meng XL, He MH, Zhao N, Guo XX, J. Power Sources, 383, 150 (2018)
- Liu Y, Lin D, Jin Y, Liu K, Tao X, Zhang Q, Zhang X, Cui Y, Sci. Adv., 3, 1 (2017)
- Yan X, Li Z, Wen Z, Han WQ, J. Phys. Chem. C, 121, 1431 (2017)
- Zhang J, Zhao N, Zhang M, Li Y, Chu PK, Guo X, Di Z, Wang X, Li H, Nano Energy, 28, 447 (2016)
- Cheng SHS, He KQ, Liu Y, Zha JW, Kamruzzaman M, Ma RLW, Dang ZM, Li RKY, Chung CY, Electrochim. Acta, 253, 430 (2017)
- Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB, Nano Energy, 46, 176 (2018)
- Zhang YH, Chen F, Yang DJ, Zha WP, Li JY, Shen Q, Zhang XL, Zhang LM, J. Electrochem. Soc., 164(7), A1695 (2017)
- Yang SH, Kim MY, Kim DH, Jung HY, Ryu HM, Han JH, Lee MS, Kim HS, J. Ind. Eng. Chem., 56, 422 (2017)
- Xi J, Qiu X, Zhu W, Tang X, Microporous Mesoporous Mater., 88, 1 (2006)
- Cheng L, Park JS, Hou H, Zorba V, Chen G, Richardson T, Cabana J, Russo R, Doeff M, J. Mater. Chem. A, 2, 172 (2014)
- Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C, Joule, 2, 497 (2018)
- Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL, Mater. Chem. Phys., 134(2-3), 571 (2012)
- Zhou WD, Wang SF, Li YT, Xin S, Manthiram A, Goodenough JB, J. Am. Chem. Soc., 138(30), 9385 (2016)
- Chen S, Zhao Y, Yang J, Yao L, Xu X, Ionics, 23, 2603 (2017)
- Murugan R, Thangadurai V, Weppner W, Angew. Chem.-Int. Edit., 46(41), 7778 (2007)