Korean Journal of Chemical Engineering, Vol.36, No.3, 325-332, March, 2019
Development of surrogate model using CFD and deep neural networks to optimize gas detector layout
E-mail:
To reduce damage arising from accidents in chemical processing plants, detection of the incident must be rapid to mitigate the danger. In the case of the gas leaks, detectors are critical. To improve efficiency, leak detectors must be installed at locations after considering various factors like the characteristics of the workspace, processes involved, and potential consequences of the accidents. Thus, the consequences of potential accidents must be simulated. Among various approaches, computational fluid dynamics (CFD) is the most powerful tool to determine the consequences of gas leaks in industrial plants. However, the computational cost of CFD is large, making it prohibitively difficult and expensive to simulate many scenarios. Thus, a deep-neural-network-based surrogate model has been designed to mimic FLACS (FLame ACceleration Simulator), one of the most important programs in the modeling of gas leaks. Using the simulated results of a proposed surrogate model, a sensor allocation optimization problem was solved using mixed integer linear programming (MILP). The optimal solutions produced by the proposed surrogate model and FLACS were compared to verify the efficacy of the proposed surrogate model.
Keywords:Gas Detector Allocation;Optimization;Milp;Computational Fluid Dynamics;FLACS;Artificial Neural Network;Surrogate Model
- Hanna SR, Brown MJ, Camelli FE, Chan ST, Coirier WJ, Kim S, Hansen OR, Huber AH, Reynolds RM, Bull. Amer. Meteorol. Soc., 87, 1713 (2006)
- Hanna SR, Hansen OR, Ichard M, Strimaitis D, Atm. Environ., 43, 262 (2009)
- Long KJ, Zajaczkowski FJ, Haupt SE, Peltier LJ, JCP, 4, 881 (2009)
- Xie ZT, Hayden P, Wood CR, Atm. Environ., 71, 64 (2013)
- Hamel D, Chwastek M, Farouk B, Dandekar K, Kam M, Proceedings of the 2006 IEEE International Workshop on, 38 (2006).
- Berry J, Hart WE, Phillips CA, Uber JG, Watson JP, J. Water Res. Plan. Man., 132, 218 (2006)
- Legg SW, Benavides-Serrano AJ, Siirola JD, Watson JP, Davis SG, Bratteteig A, Laird CD, Comput. Chem. Eng., 47, 194 (2012)
- Legg SW, Wang C, Benavides-Serrano AJ, Laird CD, J. Loss Prev. Process Ind., 26(3), 410 (2013)
- Benavides-Serrano AJ, Legg SW, Vazquez-Roman R, Mannan M, Laird CD, Ind. Eng. Chem. Res., 53, 5355 (2013)
- Benavides-Serrano AJ, Mannan MS, Laird CD, AIChE J., 62(8), 2728 (2016)
- Benavides-Serrano AJ, Mannan MS, Laird CD, J. Loss Prev. Process Ind., 35, 339 (2015)
- Davis S, Hansen OR, Gavelli F, Bratteteig A, Using CFD to Analyze Gas Detector Placement in Process Facilities. (2015).
- Vazquez-Roman R, Diaz-Ovalle C, Quiroz-Perez E, Mannan MS, J. Loss Prev. Process Ind., 44, 633 (2016)
- Gomes EG, de Andrade Medronho R, Alves JVB, Gas Detector Placement in Petroleum Process Unit Using Computational Fluid Dynamics. International Journal of Modeling and Simulation for the Petroleum Industry, 8 (2014).
- Wang K, Chen T, Kwa ST, Ma YF, Lau R, Comput. Chem. Eng., 69, 89 (2014)
- Margheri L, Sagaut P, J. Comput. Phys., 324, 137 (2016)
- Na J, Jeon K, Lee WB, Chem. Eng. Sci., 181, 68 (2018)
- Launder BE, Spalding DB, Comput. Meth. Appl. Mech. Eng., 3, 269 (1974)
- GexCon AS, FLACS v10.7 Users Manual (2017).
- Hansen OR, Gavelli F, Ichard M, Davis SG, J. Loss Prev. Process Ind., 23(6), 857 (2010)
- Goodfellow I, Bengio Y, Courville A, Deep Learning, MIT Press (2016).