화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.31, No.1, 25-34, February, 2019
Pairwise interaction of drops in shear-thinning inelastic fluids
E-mail:
Inelasticity effects on the migration of a drop and pairwise interaction of drops in a simple shear flow are studied using a finite-difference front-tracking method. The Carreau-Yasuda model is used to adjust the shear-thinning behavior of fluids. Results showed that drop deformation and migration rate of drops in an inelastic system are smaller than those in a Newtonian one. It was revealed that inelasticity has larger effects for the case in which Newtonian drops suspended in a non-Newtonian phase. The time of collision process is shorter for an inelastic system in comparison with the Newtonian one. For two Newtonian drops in an elastic matrix, the results demonstrated that the drops exhibit reversible cross-flow migration at high inelasticity.
  1. Aggarwal N, Sarkar K, J. Fluid Mech., 584, 1 (2007)
  2. Anand A, Rajagopal KR, Int. J. Cardiovasc. Med. Sci., 4, 59 (2004)
  3. Ashrafizaadeh M, Bakhshaei H, Comput. Math. Appl., 58, 1045 (2009)
  4. Bayareh M, Mortazavi S, Iran. J. Sci. Technol. Trans. B-Eng., 33, 441 (2009)
  5. Bayareh M, Mortazavi S, Int. J. Multiph. Flow, 37(10), 1315 (2011)
  6. Bayareh M, Mortazavi S, Adv. Eng. Softw, 42, 604 (2011)
  7. Bayareh M, Mortazavi S, Iran J. Sci. Technol.-Trans. Mech. Eng., 35, 121 (2011)
  8. Bayareh M, Mortazavi S, J. Mech., 29, 53 (2013)
  9. Bird R, Armstrong RC, Hassager O, Dynamics of Polymer Liquids, Vol.1: Fluid Mechanics, 2nd ed., Wiley, New York, 1987.
  10. Gan YX, Continuum Mechanics: Progress in Fundamentals and Engineering Applications, InTech, Rijeka, 2012.
  11. Guido S, Simeone M, J. Fluid Mech., 357, 1 (1998)
  12. Li J, Renardy YY, J. Non-Newton. Fluid Mech., 95(2-3), 235 (2000)
  13. Li X, Sarkar K, Phys. Rev. Lett., 95, 256001 (2005)
  14. Liu JR, Zhu CY, Fu TT, Ma YG, Li HZ, Chem. Eng. Sci., 93, 55 (2013)
  15. Loewenberg M, Hinch EJ, J. Fluid Mech., 321, 395 (1996)
  16. Mighri F, Carreau PJ, Ajji A, J. Rheol., 42(6), 1477 (1998)
  17. Mortazavi S, Tryggvason G, J. Fluid Mech., 411, 325 (2000)
  18. Mukherjee S, Sarkar K, J. Non-Newton. Fluid Mech., 160(2-3), 104 (2009)
  19. Mukherjee S, Sarkar K, J. Fluid Mech., 727, 318 (2013)
  20. Potapov A, Spivak R, Lavrenteva OM, Nir A, Ind. Eng. Chem. Res., 45(21), 6985 (2006)
  21. Premlata AR, Tripathi MK, Karri B, Sahu KC, Phys. Fluids, 29, 033103 (2017)
  22. Rallison JM, Annu. Rev. Fluid Mech., 16, 45 (1984)
  23. Schlichting H, Boundary-Layer Theory, 6th ed., McGraw-Hill, New York, 1968.
  24. Sibillo V, Simeone M, Guido S, Rheol. Acta, 43(5), 449 (2004)
  25. Subramanian RS, Non-Newtonian flows, 1-5 2002.
  26. Sun W, Zhu C, Fu T, Ma Y, Li H, Int. J. Multiph. Flow, 110, 69 (2019)
  27. Unverdi SO, Tryggvason G, Physica D, 60, 70 (199)
  28. Varanasi PP, Ryan ME, Stroeve P, Ind. Eng. Chem. Res., 33(7), 1858 (1994)
  29. Wan S, Morrison D, Bryden IG, Theor. Comput. Fluid Dyn., 13, 349 (2000)
  30. Yue P, Feng JJ, Liu C, Shen J, J. Fluid Mech., 540, 427 (2005)
  31. Zhang L, Yang C, Mao ZS, J. Non-Newton. Fluid Mech., 165(11-12), 555 (2010)