화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.2, 65-72, February, 2019
전기화학적 방법을 통한 금속 이중기공구조 형성 및 제어
Formation and Control of Dual Porous Structures of Metal by an Electrochemical Method
E-mail:
Dual porous structures are observed for the first time on a metallic Cu surface underneath anodic Cu oxide by the application of an anodizing voltage to Cu in oxalic acid. The as-prepared porous Cu surface contains macropores of less than 1 μm diameter and mesopores of about tens of nanometers diameter with circular shapes. The size and density (number of pores/area) of the macropores are dependent on the applied voltage. It is likely that the localized dissolution (corrosion) of Cu in oxalic acid under the anodizing voltages is responsible for the formation of the mesopores, and the combination of a number of the mesopores might create the macropores, especially under a relatively high anodizing voltages or a prolonged anodizing time. The variations of pore structure (especailly macropores) with applied voltage and time are reasonably explained on the basis of the proposed mechanism of pore formation.
  1. Shin HC, Liu M, Chem. Mater., 16, 5460 (2004)
  2. Cabana J, Monconduit L, Larcher D, Palacin MR, Adv. Mater., 22(35), E170 (2010)
  3. Ahmad M, Zhao J, Iqbal J, Miao W, Xie L, Mo R, Zhu J, J. Mater. Chem., 21, 7723 (2011)
  4. Ha DH, Islam MA, Robinson RD, Nano Lett., 12, 5122 (2012)
  5. Chun YM, Shin HC, Electrochim. Acta, 209, 369 (2016)
  6. Vetter J, Novak P, Wagner MR, Veit C, Moller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A, J. Power Sources, 147(1-2), 269 (2005)
  7. Wachtler M, Winter M, Besenhard JO, J. Power Sources, 105(2), 151 (2002)
  8. Shin HC, Dong J, Liu ML, Adv. Mater., 15(19), 1610 (2003)
  9. Lee KL, Jung JY, Lee SW, Moon HS, Park JW, J. Power Sources, 129(2), 270 (2004)
  10. Kim R, Han D, Nam D, Kim J, Kwon H, J. Electrochem. Soc., 157(5), D269 (2010)
  11. Rho YH, Kanamura K, Fujisaki M, Hamagami J, Suda S, Umegaki T, Solid State Ion., 151(1-4), 151 (2002)
  12. Duan HN, Gnanaraj J, Chen XP, Li BQ, Liang JY, J. Power Sources, 185(1), 512 (2008)
  13. Taberna L, Mitra S, Poizot P, Simon P, Tarascon JM, Nat. Mater., 5(7), 567 (2006)
  14. Ryou MH, Lee YM, Lee YJ, Winter M, Bieker P, Adv. Funct. Mater., 25(6), 834 (2015)
  15. Ord JL, DeSmet DJ, J. Electrochem. Soc., 123, 1876 (1976)
  16. Zhou X, Thompson GE, Habazaki H, Shimizu K, Skeldon P, Wood GC, Thin Solid Films, 293(1-2), 327 (1997)
  17. Rudenja S, Pan J, Wallinder IO, Leygraf C, Kulu P, J. Electrochem. Soc., 146(11), 4082 (1999)
  18. O'sullivan JP, Wood GC, Proc. R. Soc. Lond. A, 317, 511 (1970)
  19. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 16, 3331 (2001)
  20. Lee JW, Park SJ, Choi WS, Shin HC, Electrochim. Acta, 56(17), 5919 (2011)
  21. Thompson GE, Thin Solid Films, 297(1-2), 192 (1997)
  22. Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gosele U, Nano Lett., 2, 677 (2002)
  23. Park SH, Shin HS, Kim YH, Park HM, Song JY, J. Alloy. Compd., 580, 152 (2013)