- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.29, No.2, 129-135, February, 2019
Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조
In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures
E-mail:
A powder mixture of 70 wt% Al2O3 and 30 wt% hydroxyapatite (HA) is sintered at 1300 °C or 1350 °C for 2 h at normal pressure. An MgF2-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without MgF2 show α & β-tricalcium phosphates (TCPs) and Al2O3 phases with no HA at either of the sintering temperatures. In the case of 1,350 °C, a CaAl4O7 phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104MPa for 1,300 and 1,350 °C, respectively. Because the decomposition of HA produces a H2O vapor, fewer large pores of 5-6 μm form at 1,300 °C. The MgF2-added samples show FA and Al2O3 phases with no TCP. Densification values are 79 and 87%, and strengths are 104 and 143 MPa for 1,300 and 1,350 °C, respectively. No large pores are observed, and the grain size of FA (1-2 μm) is bigger than that of TCP (0.7 μm ≥) in the samples without MgF2. The resulting TCP/Al2O3 and FA/Al2O3 composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.
- Gautier S, Champion E, Assollant DB, J. Eur. Ceram. Soc., 17, 1361 (1997)
- Kim HW, Koh YH, Seo SB, Kim HE, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 23, 515 (2003)
- Viswanath B, Ravishankar N, Scr. Mater., 55, 863 (2006)
- Evis Z, Doremus RH, Mater. Res. Bull., 43(10), 2643 (2008)
- Xihua Z, Changxia L, Musen L, Yunqiang B, Junlong S, Ceram. Int., 35, 1969 (2009)
- Kim SJ, Bang HG, Song JH, Park SY, Ceram. Int., 35, 1647 (2009)
- Aminzare M, Eskandari A, Baroonian MH, Berenov A, Hesabi ZR, Taheri M, Sadrnezhaad SK, Ceram. Int., 39, 2197 (2013)
- Silva VV, Lamerias FS, Dominguez RZ, Compos. Sci. Technol., 61, 301 (2001)
- Rao RR, Kannan TS, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 20, 187 (2002)
- Evis Z, Usta M, Kutbay I, Mater. Chem. Phys., 110(1), 68 (2008)
- Nath S, Biswas K, Wang KS, Bordia RK, Basu B, J. Am. Ceram. Soc., 93(6), 1639 (2010)
- Li J, Fartash B, Hermansson L, Biomaterials, 16, 417 (1995)
- Adolfsson E, Alberius-Henning P, Hermansson L, J. Am. Ceram. Soc., 83(11), 2798 (2000)
- Shen ZJ, Adolfsson E, Nygren M, Gao L, Kawaoka H, Niihara K, Adv. Mater., 13(3), 214 (2001)
- Kong YM, Bae CJ, Lee SH, Kim HW, Kim HE, Biomaterials, 26, 509 (2005)
- Singh VK, Reddy BR, Ceram. Int., 38, 5333 (2012)
- Ha JS, J. Korean Ceram. Soc., 52, 374 (2015)
- Adolfsson E, Nygren M, Hermansson L, J. Am. Ceram. Soc., 82, 2909 (1999)
- Tredwin CJ, Young AM, Abou Neel EA, Georgiou G, Knowles JC, J. Mater. Sci. -Mater. Med., 25, 47 (2014)
- Bouslama N, Ayed FB, Bouaziz J, Ceram. Int., 35, 1909 (2009)
- Weber D, Bischoff A, Eur. J. Mineral., 6, 591 (1994)
- Ayeda FB, Bouaziza J, Bouzouitab K, J. Eur. Ceram. Soc., 20, 1069 (2000)
- Pang YX, Bao X, Weng L, J. Mater. Sci., 39(20), 6311 (2004)