화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.2, 129-135, February, 2019
Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조
In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures
E-mail:
A powder mixture of 70 wt% Al2O3 and 30 wt% hydroxyapatite (HA) is sintered at 1300 °C or 1350 °C for 2 h at normal pressure. An MgF2-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without MgF2 show α & β-tricalcium phosphates (TCPs) and Al2O3 phases with no HA at either of the sintering temperatures. In the case of 1,350 °C, a CaAl4O7 phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104MPa for 1,300 and 1,350 °C, respectively. Because the decomposition of HA produces a H2O vapor, fewer large pores of 5-6 μm form at 1,300 °C. The MgF2-added samples show FA and Al2O3 phases with no TCP. Densification values are 79 and 87%, and strengths are 104 and 143 MPa for 1,300 and 1,350 °C, respectively. No large pores are observed, and the grain size of FA (1-2 μm) is bigger than that of TCP (0.7 μm ≥) in the samples without MgF2. The resulting TCP/Al2O3 and FA/Al2O3 composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.
  1. Gautier S, Champion E, Assollant DB, J. Eur. Ceram. Soc., 17, 1361 (1997)
  2. Kim HW, Koh YH, Seo SB, Kim HE, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 23, 515 (2003)
  3. Viswanath B, Ravishankar N, Scr. Mater., 55, 863 (2006)
  4. Evis Z, Doremus RH, Mater. Res. Bull., 43(10), 2643 (2008)
  5. Xihua Z, Changxia L, Musen L, Yunqiang B, Junlong S, Ceram. Int., 35, 1969 (2009)
  6. Kim SJ, Bang HG, Song JH, Park SY, Ceram. Int., 35, 1647 (2009)
  7. Aminzare M, Eskandari A, Baroonian MH, Berenov A, Hesabi ZR, Taheri M, Sadrnezhaad SK, Ceram. Int., 39, 2197 (2013)
  8. Silva VV, Lamerias FS, Dominguez RZ, Compos. Sci. Technol., 61, 301 (2001)
  9. Rao RR, Kannan TS, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 20, 187 (2002)
  10. Evis Z, Usta M, Kutbay I, Mater. Chem. Phys., 110(1), 68 (2008)
  11. Nath S, Biswas K, Wang KS, Bordia RK, Basu B, J. Am. Ceram. Soc., 93(6), 1639 (2010)
  12. Li J, Fartash B, Hermansson L, Biomaterials, 16, 417 (1995)
  13. Adolfsson E, Alberius-Henning P, Hermansson L, J. Am. Ceram. Soc., 83(11), 2798 (2000)
  14. Shen ZJ, Adolfsson E, Nygren M, Gao L, Kawaoka H, Niihara K, Adv. Mater., 13(3), 214 (2001)
  15. Kong YM, Bae CJ, Lee SH, Kim HW, Kim HE, Biomaterials, 26, 509 (2005)
  16. Singh VK, Reddy BR, Ceram. Int., 38, 5333 (2012)
  17. Ha JS, J. Korean Ceram. Soc., 52, 374 (2015)
  18. Adolfsson E, Nygren M, Hermansson L, J. Am. Ceram. Soc., 82, 2909 (1999)
  19. Tredwin CJ, Young AM, Abou Neel EA, Georgiou G, Knowles JC, J. Mater. Sci. -Mater. Med., 25, 47 (2014)
  20. Bouslama N, Ayed FB, Bouaziz J, Ceram. Int., 35, 1909 (2009)
  21. Weber D, Bischoff A, Eur. J. Mineral., 6, 591 (1994)
  22. Ayeda FB, Bouaziza J, Bouzouitab K, J. Eur. Ceram. Soc., 20, 1069 (2000)
  23. Pang YX, Bao X, Weng L, J. Mater. Sci., 39(20), 6311 (2004)