화학공학소재연구정보센터
Bioresource Technology, Vol.278, 272-278, 2019
A rapid inoculation method for microalgae biofilm cultivation based on microalgae-microalgae co-flocculation and zeta-potential adjustment
Due to the small size, similar density to water, cells inoculating onto the solid carrier is a major challenge for microalgae biofilm cultivation. To reduce biofilm inoculation time, A. falcatus with long stripe were chosen as the bond linking with the main microalgae cells forming microalgae-microalgae co-flocculation by bridging and twining. The optimal matching species were S. obliquus and A. falcatus with the volume ratio of 4-1. By changing the zeta-potential of the microalgae-microalgae co-flocculation to positive and negative through pH regulating, the inoculation time was significantly shorted from 4 h to 1.5 min due to the charge neutralization. Fortunately, the added A. falcatus and pH regulation has no negative effects on biofilm growth. Inversely, the porous microstructure of microalgae-microalgae co-flocculation improve the transfer efficiency of nutrients, resulting a 90.15% increase on biomass productivity (229.15 g m(-2)) comparing to pure microalgae species.