화학공학소재연구정보센터
Chemical Engineering Journal, Vol.355, 901-909, 2019
Design and durability study of environmental-friendly room-temperature processable icephobic coatings
Ice accumulation leads to improper functioning or even damages to ships, offshore platforms, sports facilities and land buildings in cold climate regions. Although fluorochemicals have demonstrated attractive performance for icephobic applications, their use has been restricted due to health and environmental concerns. Here, we present a facile method to fabricate fluorine-free icephobic coatings with potential applications for outdoor facilities and structures. The coating consists of a silicone-epoxy hybrid resin, polydimethylsiloxane (PDMS) and SiO2 nanoparticles with different sizes. Particularly, the use of different sized (10-20 nm and 200 nm) SiO2 nanoparticles results in excellent icephobicity and mechanical properties. The mechanical properties and durability of the coating were analysed according to respective test standards and compared with other reported icephobic coatings. The durable icephobic potency of the coatings is very promising as a sustainable green solution for various practical anti-icing applications.