화학공학소재연구정보센터
Current Applied Physics, Vol.19, No.4, 363-369, 2019
Behavior of Al/Cu/Ti electrodes in surface acoustic wave filter at high power
Driven by the need for high data-rates and continuous reduction in device size, surface acoustic wave filters are required to work under increasingly high power. In this work, a series of 2.7 GHz surface acoustic wave filters with Al/Cu/Ti three-layered electrode were fabricated and loaded with high power. Those three-layered electrodes showed weaker texture but higher stability than Al-Cu alloy electrode at high power. Morphologies, microstructures and elements distribution in cross section of fingers were analyzed carefully before and after high power loading. Results show that the circular-arc-shaped outline of fingers were appeared in most samples after high power loading, and the number of gains in the finger cross section changed from some into several with much larger volume. The features of distribution of Cu atoms also coincided with these microstructures. By finite element method and phase diagram analysis, the higher stability of Al/Cu/Ti three-layered electrodes are attributed to precipitation of theta-CuAl2 in the bottom edge of electrode finger and Cu-doped alpha-Al in the center top.