Energy, Vol.168, 80-87, 2019
Magnesia phosphate cement composite bipolar plates for passive type direct methanol fuel cells
Bipolar plates composed of magnesia phosphate cement composite were fabricated via hot-press assisted hydration process. Techniques, including open circuit potential-time, alternating current impedance, and linear sweep voltammetry, were applied to the bipolar plates to investigate their electrochemical properties through both single cell and fuel cell stack at 70-90 degrees C. The results indicated that the bipolar plates achieved stable and uniform performance. Specifically, the fuel cell stack composed of three single cells in series achieved a maximum current density of 79.78 mA/cm(2) and a peak power density of 25.54 mW/cm(2) at 80 degrees C. A good and cyclable performance of the fuel cell devices using the magnesia phosphate cement based bipolar plates was observed in the switch on/off test. Then, an operation of 3.5 h was achieved under a current density of 25 mA/cm(2) during the fuel availability test. The after-test investigation suggested that the surface reinforcement of the bipolar plates might improve the performance of long term operation. In conclusion, magnesia phosphate cement composite bipolar plates are suitable for direct methanol fuel cells. (C) 2018 Elsevier Ltd. All rights reserved.
Keywords:Direct methanol fuel cells (DMFCs);Passive type;Magnesia phosphate cement (MPC) composite;Bipolar plates (BPs)