Energy Conversion and Management, Vol.180, 1203-1216, 2019
Non-neutral catalyst and reaction energy recovery to minimize the energy consumption for hydrogen production by recyclably indirect H2O electrolysis and CO2 capture
Hydrogen utilization and CO2 capture significantly improve the environment. In order to reduce the energy penalty of hydrogen production and CO2 capture, the idea of this work is to integrate the hydrogen production and CO2 capture. Here, the recyclable electro-driven process of CO2 capture and indirect H2O electrolysis was developed. In the process, the energy recovery system was developed to utilize the reaction heat. The non-neutral Ni based catalyst with single-atom catalysis was designed. DFT model and energy recovery model were developed. The turnover frequency, transmission value, electron density, band structure, reaction kinetics of hydrogen production and CO2 desorption were determined. A mechanism of second dehydrogenation and second hydrogen release was identified for the non-neutral catalysis. Non-neutral NiAlTiR + catalyst enhanced the electron transport and made electron dense region extend to the single atom zone. The 90% yield of hydrogen was produced due to the fast electron transport. The well regenerated catalyst during the 25 cycles produced the 80-90% turnover frequency and transmission compared with the fresh catalyst. The non-neutral catalyst, catalyst regeneration and reaction energy recovery reduced the energy consumption for H-2 production and CO2 capture to 0.4 V and 1 GJ/t.