화학공학소재연구정보센터
Fuel, Vol.237, 10-17, 2019
Measurement of laminar burning velocity of n-pentanol plus air mixtures at elevated temperatures and a skeletal kinetic model
Long chain alcohols are potential fuels for engine applications, however, their combustion characteristics need to be adequately investigated compared to short chain alcohols (C-1-C-4), especially at high mixture temperatures, and other conditions relevant to engine temperatures. In the present work, meso-scale diverging channel method has been used to measure the laminar burning velocity of n-pentanol + air mixtures at elevated temperatures due to existence of very limited data at higher mixture temperatures (similar to 473 K). The present experiments are carried out at atmospheric pressure with unburnt mixture temperature varying up to 560 K. The dependence of laminar burning velocity on temperature was correlated using the power law: S-u = S-u(,0) (T-u/T-u,T-0)(alpha), where a is the temperature exponent. The results show the existence of a minimum value of a for slightly rich mixtures. A reduced kinetic model based on the previous detailed kinetic model of Sarathy (2014) for C-1-C-5 straight-chain alcohols was generated with 199 species and 1427 reactions. Experimental results of laminar burning velocity of n-pentanol + air mixtures at high temperatures were compared with the present model and other kinetic models from the literature. The skeletal model accurately reproduces the measurements at various conditions.