화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.57, No.48, 16239-16245, 2018
Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a Dissolution-Degradation Strategy
Recycling of discarded polyethylene terephthalate (PET) is an important issue for both environmental protection and resource conservation purposes. In this work, a dissolution-degradation strategy has been developed for recycling PET by adding solvents such as aniline, nitrobenzene, 1-methyl-2-pyrrolidinone (NMP), or dimethyl sulfoxide (DMSO) into the traditional PET glycolysis system. The results show that the conversion of PET reaches 100% and the yield of monomer bis(hydroxyalkyl) terephthalate (BHET) reaches 82% during 1 min with zinc acetate as catalyst in DMSO at 463 K. Importantly, this strategy can be applied to a variety of catalysts. The simulation and in situ IR results indicate that the pi-pi interaction between PET and aromatic solvents plays a key role in PET dissolution, which leads to fast degradation. This promising dissolution-degradation strategy can improve the glycolysis efficiency of PET dramatically and may be applied to the degradation process of other polyesters.