Industrial & Engineering Chemistry Research, Vol.57, No.44, 15147-15158, 2018
Chemical Recovery of gamma-Valerolactone/Water Biorefinery
We introduce the optimization of the pulping conditions and propose different chemical recovery options for a proven biorefinery concept based on gamma-valerolactone (GVL)/water fractionation. The pulping process has been optimized whereby the liquor-to-wood (L:W) ratio could be reduced to 3 L/kg without compromising the pulp properties as raw material for textile fibers production. The recovery of the pulping solvent was performed through combinations of lignin precipitation by water addition, distillation at reduced pressure, and liquid CO2 extraction. With a two-step lignin precipitation coupled with vacuum distillation, more than 90% of lignin and GVL could be recovered from the spent liquor. However, a significant part of GVL remained unrecoverable in the residue, which was a highly viscous liquid with complicated phase behavior. The recovery by lignin precipitation combined with liquid CO2 extraction could recover more than 85% GVL and 90% lignin without forming any problematic residue as in the distillation process. The remaining GVL remained in the raffinate containing a low amount of lignin and other compounds, which can be further processed to isolate the GVL and improve the recovery rate.