화학공학소재연구정보센터
Journal of Adhesion, Vol.95, No.3, 169-186, 2019
Peeling of heterogeneous thin films: Effect of bending stiffness, adhesion energy, and level of heterogeneity
The peeling behaviour of a heterogeneous thin film bonded to a rigid substrate was investigated by using both experiments and finite element modeling. The enhancement in peel force was studied specifically for heterogeneous thin films with periodic stiff and compliant portions along the length. Peel tests with homogeneous thin films (uniform film thickness) showed that the maximum peel force can be observed before the onset of steady state peeling process. Moreover, this maximum peel force was observed to be a function of the bending stiffness of the film and adhesion energy at the film-substrate interface. For the heterogeneous thin films, maximum peel force can be observed either before the onset of steady state or when the peel front traverses from compliant to the stiff portion of the film. The three-dimensional finite element model, based on cohesive zone technique was developed, which provided further insight into the enhancement in peel force. The maximum force was shown to be dependent on the level of heterogeneity in addition to adhesion energy and bending stiffness as was observed with homogeneous films. The improvement in peel force was found to be prevalent at relatively low adhesion energy. This study may be helpful for the better design of homogeneous and heterogeneous thin film-substrate systems having improved bonding strength.