화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.540, 486-494, 2019
Uric acid supported one-pot solvothermal fabrication of rhombic-like Pt35Cu65 hollow nanocages for highly efficient and stable electrocatalysis
High activity and good durability of electrocatalysts are of significance in practical applications of fuel cells. Among them, multi-component metallic hollow nanocages/nanoframes show great potential as advanced catalysts because of their highly open structures, large surface area and good stability. Herein, we report a general uric acid-mediated solvothermal method for shape-controlled synthesis of rhombic-like Pt35Cu65 hollow nanocages (HNCs) with uric acid as co-reductant and co-structure-directing agent. Uric acid and cetyltrimethylammonium chloride (CTAC) played important roles in the hollow cages. The specific architectures showed remarkably enhanced catalytic properties towards glycerol oxidation reaction (GOR), ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) with the enhanced specific activity, outperforming commercial Pt/C (20 wt%). This work provides a new avenue for rational design of novel bimetallic nanocatalysts with enhanced characters in energy storage and conversion. (C) 2019 Elsevier Inc. All rights reserved.