Journal of Materials Science, Vol.54, No.2, 1162-1170, 2019
Structural characterization of A-site nonstoichiometric (1-x)Bi0.5Na0.5TiO3-xBaTiO(3) ceramics
Lead-free 1-x(Bi0.5Na0.5TiO3)-xBaTiO(3), x=0.055, 0.06 and 0.07, ceramics [i.e., near the morphotropic phase boundary (MPB)] were modified by varying the A-site cation stoichiometry to induce acceptor and donor doping through the addition of excess Na and Bi, respectively. The role of A-site nonstoichiometry on the crystal structure was investigated by using Raman spectroscopy and high-energy X-ray diffraction (XRD) techniques. The Raman spectra were analyzed via spectral deconvolution, and the resultant fitted data demonstrated deviations in the dominant bands (at 200-400cm(-1) and 400-600cm(-1)) which indicated a shift toward tetragonal distortions in all Na-excess samples. High-energy XRD data showed that all the characteristic peaks corresponding to tetragonal P4bm structure became more prominent in Na-excess sample. Rietveld refinement data confirmed the coexistence of rhombohedral (R3c) and tetragonal (P4bm) phases with a significant increase in P4bm phase fraction in Na-excess composition. The clear agreements between Raman spectroscopy and high-energy XRD data suggest that Bi-excess samples (i.e., donor doping) had little or no effect on crystal structure, whereas Na-excess samples (i.e., acceptor doping) had a significant influence on the structure near the MPB such that tetragonal distortions were induced in both the local structure and the long-range average structure.